fr-167653 has been researched along with Pain* in 2 studies
2 other study(ies) available for fr-167653 and Pain
Article | Year |
---|---|
Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia.
Recent studies have implicated the activation of stress-activated mitogen-activated protein kinase (MAPK) p38 in spinal microglial cells for development of neuropathic and inflammatory pain. The aim of the present study was to investigate whether phosphorylation of p38 (p-p38) also mediates mechanical allodynia and thermal hyperalgesia induced by plantar incision.. After rats received a plantar incision surgery, mechanical allodynia and thermal hyperalgesia were determined by von Frey filaments and radiant heat, respectively, and the number of p-p38 immunoreactive cells in the dorsal horn was quantified to determine p38 activation at different time points after incision. The p38 inhibitor FR167653 was administered intrathecally 30 min before hind paw plantar incision to determine the role of p38 in postoperative pain.. A significant increase in number of p-p38 immunoreactive cells was observed in the ipsilateral L4-5 spinal dorsal horn from 1 h to 3 days after the incision. p-p38 was found predominantly in microglia. However, microglial activation (assessed by OX-42 upregulation) was not evident until 3 days after plantar incision. Intrathecal pretreatment of FR167653 attenuated incision-induced mechanical allodynia from 1 h to day 2 and significantly reduced activation of p38 in the dorsal horn 1 day after plantar incision. However, FR167653 only inhibited heat hyperalgesia at an early time point.. Plantar incision-induced mechanical allodynia can be prevented by the p38 inhibitor. Our results suggest that p38 activation in spinal microglia play a role in incision-induced mechanical allodynia in rats. Therefore, p38 inhibition may be useful in treating postsurgical pain. Topics: Animals; Enzyme Activation; Male; Microglia; p38 Mitogen-Activated Protein Kinases; Pain; Pain Measurement; Physical Stimulation; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Spinal Cord | 2009 |
Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis.
Immunohistochemical and behavioral study using rat models of lumbar disc herniation and cauda equina syndrome.. To investigate the expression of activated p38 mitogen-activated protein kinases (p38 MAP kinase; p38) in the spinal cord and to determine the effect of intrathecal administration of a specific p38 inhibitor on pain in a lumbar disc herniation model and on motor function and hypoalgesia in a spinal canal stenosis (SCS) model.. In pathologic lumbar disc herniation-induced neuropathic pain and compression of cauda equina-induced motor dysfunction and hypoalgesia caused by SCS, glia are activated and produce certain cytokines, including tumor necrosis factor-alpha (TNF-alpha) and interleukins, which play a crucial role in the pathogenesis of nerve degeneration. p38 is phosphorylated by these cytokines, suggesting that it may play an important role in pain transmission and nerve degeneration. Here we have examined the role of p38 in rat models of lumbar disc herniation and SCS.. Six-week-old male Sprague-Dawley rats were used. For the disc herniation model, autologous nucleus pulposus was applied to L5 nerve roots, which were then crushed. For the SCS model, a piece of silicon was placed under the lamina of the fourth lumbar vertebra. We assessed mechanical allodynia, hypoalgesia, and motor function using von Frey hairs, treadmill tests, and immunohistochemical localization of phosphorylated p38 (P-p38) in the cauda equina, dorsal root ganglion (DRG), and spinal cord, which were also double-stained with NeuN (neuronal marker), GFAP (astrocyte/Schwann cell marker), or isolectin B4 (IB4; microglia marker). We also examined the effects of intrathecal administration of a specific p38 inhibitor, FR167653, on nucleus pulposus-induced pain, hypoalgesia, and motor dysfunction following SCS.. We demonstrated that activated P-p38-immunoreactive cells in the spinal cord and cauda equina were not observed before nerve injury but appeared in the cauda equina, DRG, and spinal dorsal horn in the disc herniation and SCS models. Double-labeling revealed that most P-p38-immunoreactive cells were isolectin B4-labeled microglia and GFAP-immunoreactive Schwann cells. Intrathecal administration of the p38 inhibitor FR167653 decreased mechanical allodynia in the disc herniation model and improved hypoalgesia and intermittent motor dysfunction in the SCS model.. Our findings suggest that activated p38 may play an important role in the involvement of microglia in the pathophysiology of pain following lumbar disc herniation and mechanical hypoalgesia, and motor nerve dysfunction of cauda equina following SCS. Topics: Animals; Behavior, Animal; Cauda Equina; Enzyme Inhibitors; Ganglia, Spinal; Hypesthesia; Immunohistochemistry; Injections, Spinal; Intervertebral Disc Displacement; Lumbar Vertebrae; Male; Microglia; Movement Disorders; Neurons; p38 Mitogen-Activated Protein Kinases; Pain; Phosphorylation; Polyradiculopathy; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Schwann Cells; Spinal Cord; Spinal Stenosis; Time Factors; Walking | 2007 |