curcumin and Fibrosis

curcumin has been researched along with Fibrosis* in 78 studies

Reviews

5 review(s) available for curcumin and Fibrosis

ArticleYear
Traditional Chinese medicine in thyroid-associated orbitopathy.
    Journal of endocrinological investigation, 2023, Volume: 46, Issue:6

    Orbital fibroblasts (OF) are considered the central target cells in the pathogenesis of thyroid-associated orbitopathy (TAO), which comprises orbital inflammation, orbital tissue edema, adipogenesis, fibrosis, oxidative stress and autophagy. Certain active ingredients of traditional Chinese medicine (TCM) demonstrated inhibition of TAO-OF in pre-clinical studies and they could be translated into novel therapeutic strategies.. The pertinent and current literature of pre-clinical studies on TAO investigating the effects of active ingredients of TCM was reviewed using the NCBI PubMed database.. Eleven TCM compounds demonstrated inhibition of TAO-OF in-vitro and three of them (polydatin, curcumin, and gypenosides) resulted in improvement in TAO mouse models. Tanshinone IIA reduced inflammation, oxidative stress and adipogenesis. Both resveratrol and its precursor polydatin displayed anti-oxidative and anti-adipogenic properties. Celastrol inhibited inflammation and triptolide prevented TAO-OF activation, while icariin inhibited autophagy and adipogenesis. Astragaloside IV reduced inflammation via suppressing autophagy and inhibited fat accumulation as well as collagen deposition. Curcumin displayed multiple actions, including anti-inflammatory, anti-oxidative, anti-adipogenic, anti-fibrotic and anti-angiogenic effects via multiple signaling pathways. Gypenosides reduced inflammation, oxidative stress, tissue fibrosis, as well as oxidative stress mediated autophagy and apoptosis. Dihydroartemisinin inhibited OF proliferation, inflammation, hyaluronan (HA) production, and fibrosis. Berberine attenuated inflammation, HA production, adipogenesis, and fibrosis.. Clinical trials of different phases with adequate power and sound methodology will be warranted to evaluate the appropriate dosage, safety and efficacy of these compounds in the management of TAO.

    Topics: Animals; Curcumin; Fibroblasts; Fibrosis; Graves Ophthalmopathy; Inflammation; Medicine, Chinese Traditional; Mice

2023
Efficacy of the monocarbonyl curcumin analog C66 in the reduction of diabetes-associated cardiovascular and kidney complications.
    Molecular medicine (Cambridge, Mass.), 2022, 10-31, Volume: 28, Issue:1

    Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66). There are several advantages of C66, like its synthetic accessibility, structural simplicity, improved chemical stability (in vitro and in vivo), presence of two reactive electrophilic centers, and good electron-accepting capacity. Considering these characteristics, we reviewed the literature on the application of C66 in resolving diabetes-associated cardiovascular and renal complications in animal models. We also summarized the mechanisms by which C66 is preventing the release of pro-oxidative and pro-inflammatory molecules in the priming and in activation stage of cardiomyopathy, renal fibrosis, and diabetic nephropathy. The cardiovascular protective effect of C66 against diabetes-induced oxidative damage is Nrf2 mediated but mainly dependent on JNK2. In general, C66 causes inhibition of JNK2, which reduces cardiac inflammation, fibrosis, oxidative stress, and apoptosis in the settings of diabetic cardiomyopathy. C66 exerts a powerful antifibrotic effect by reducing inflammation-related factors (MCP-1, NF-κB, TNF-α, IL-1β, COX-2, and CAV-1) and inducing the expression of anti-inflammatory factors (HO-1 and NEDD4), as well as targeting TGF-β/SMADs, MAPK/ERK, and PPAR-γ pathways in animal models of diabetic nephropathy. Based on the available evidence, C66 is becoming a promising drug candidate for improving cardiovascular and renal health.

    Topics: Animals; Curcumin; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Fibrosis; Inflammation; Kidney; Oxidative Stress

2022
Cardiac fibrosis and curcumin: a novel perspective on this natural medicine.
    Molecular biology reports, 2021, Volume: 48, Issue:11

    According to WHO statistics, cardiovascular disease are the leading causes of death in the world. One of the main factors which is causing heart failure, systolic and diastolic dysfunction, and arrythmias is a condition named cardiac fibrosis. This condition is defined by the accumulation of fibroblast-produced ECM in myocardium layer of the heart.. Accordingly, the current review aims to depict the role of curcumin in the regulation of different signaling pathways that are involved in cardiac fibrosis.. A great number of cellular and molecular mechanisms such as oxidative stress, inflammation, and mechanical stress are acknowledged to be involved in cardiac fibrosis. Despite the available therapeutic procedures which are designed to target these mechanisms in order to prevent cardiac fibrosis, still, effective therapeutic methods are needed. Curcumin is a natural Chinese medicine which currently has been declared to have therapeutic properties such as anti-oxidant and immunomodulatory activities. In this review, we have gathered several experimental studies in order to represent diverse impacts of this turmeric derivative on pathogenic factors of cardiac fibrosis.. Curcumin might open new avenues in the field of cardiovascular treatment.

    Topics: Animals; Antioxidants; Curcumin; Fibrosis; Heart Diseases; Humans; Immunologic Factors; Medicine, Chinese Traditional; Myocardium

2021
Anti-fibrotic effects of curcumin and some of its analogues in the heart.
    Heart failure reviews, 2020, Volume: 25, Issue:5

    Cardiac fibrosis stems from the changes in the expression of fibrotic genes in cardiac fibroblasts (CFs) in response to the tissue damage induced by various cardiovascular diseases (CVDs) leading to their transformation into active myofibroblasts, which produce high amounts of extracellular matrix (ECM) proteins leading, in turn, to excessive deposition of ECM in cardiac tissue. The excessive accumulation of ECM elements causes heart stiffness, tissue scarring, electrical conduction disruption and finally cardiac dysfunction and heart failure. Curcumin (Cur; also known as diferuloylmethane) is a polyphenol compound extracted from rhizomes of Curcuma longa with an influence on an extensive spectrum of biological phenomena including cell proliferation, differentiation, inflammation, pathogenesis, chemoprevention, apoptosis, angiogenesis and cardiac pathological changes. Cumulative evidence has suggested a beneficial role for Cur in improving disrupted cardiac function developed by cardiac fibrosis by establishing a balance between degradation and synthesis of ECM components. There are various molecular mechanisms contributing to the development of cardiac fibrosis. We presented a review of Cur effects on cardiac fibrosis and the discovered underlying mechanisms by them Cur interact to establish its cardio-protective effects.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Cell Differentiation; Curcumin; Fibrosis; Heart Failure; Humans; Myocardium; Myofibroblasts; Signal Transduction

2020
Curcumin Management of Myocardial Fibrosis and its Mechanisms of Action: A Review.
    The American journal of Chinese medicine, 2019, Volume: 47, Issue:8

    Topics: Animals; Anti-Inflammatory Agents; Curcumin; Fibrosis; Heart Diseases; Humans

2019

Other Studies

73 other study(ies) available for curcumin and Fibrosis

ArticleYear
High hydrostatic pressure participates in atrial fibrosis through the p300/p53/Smad3 pathway.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2024, Volume: 38, Issue:1

    As an independent risk factor of atrial fibrillation (AF), hypertension (HTN) can induce atrial fibrosis through cyclic stretch and hydrostatic pressure. The mechanism by which high hydrostatic pressure promotes atrial fibrosis is unclear yet. p300 and p53/Smad3 play important roles in the process of atrial fibrosis. This study investigated whether high hydrostatic pressure promotes atrial fibrosis by activating the p300/p53/Smad3 pathway. Biochemical experiments were used to study the expression of p300/p53/Smad3 pathway in left atrial appendage (LAA) tissues of patients with sinus rhythm (SR), AF, AF + HTN, and C57/BL6 mice, hypertensive C57/BL6 mice and atrial fibroblasts of mice. To investigate the roles of p300 and p53 in the process of atrial fibrosis, p300 and p53 in mice atrial fibroblasts were knocked in or knocked down, respectively. The expression of p300/p53/Smad3 and fibrotic factors was higher in patients with AF and AF + HTN than those with SR only. The expressions of p300/p53/Smad3 and fibrotic factors increased in hypertensive mice. Curcumin (Cur) and knocking down of p300 reversed the expressions of these factors. 40 mmHg hydrostatic pressure/overexpression of p300 upregulated the expressions of p300/p53/Smad3 and fibrotic factors in mice LAA fibroblasts. While Cur or knocking down p300 reversed these changes. Knocking down/overexpression of p53, the expressions of p53/Smad3 and fibrotic factors also decreased/increased, correspondingly. High hydrostatic pressure promotes atrial fibrosis by activating the p300/p53/Smad3 pathway, which further increases the susceptibility to AF.

    Topics: Animals; Atrial Fibrillation; Curcumin; Fibrosis; Heart Atria; Humans; Hydrostatic Pressure; Hypertension; Mice; Tumor Suppressor Protein p53

2024
The protective effect of curcumin on cardiac markers and fibrosis in abemaciclib-induced cardiac damage in rats.
    Journal of biochemical and molecular toxicology, 2023, Volume: 37, Issue:1

    Abemaciclib (ABE) is a cyclin-dependent kinase inhibitor used in combination with an antiestrogen in the treatment of breast cancer. In addition to the important therapeutic properties of this drug, its side effects are not fully known. In this study, we aimed to investigate the protective effect of curcumin (CUR) on cardiac damage caused by ABE administration. Forty rats were equally divided into control, dimethyl sulfoxide (150 µL), CUR (30 mg/kg/day), ABE (26 mg/kg/day), and ABE + CUR (26 mg/kg/day ABE and 30mg/kg/day CUR) groups (n = 8). Injections were administered daily for 28 days. Troponin-I, total cholesterol, and creatine kinase myocardial band (CK-MB) levels and cardiac fibrosis were higher in the ABE group than in the control group (p < 0.05), and were lower in the ABE + CUR group than in the ABE group (p < 0.05). The results showed that ABE administration can cause cardiac damage and increase cardiac fibrosis. However, they showed that coadministration of CUR with ABE could suppress increases in CK-MB, troponin-I, and total cholesterol levels and also cardiac fibrosis associated with cardiac damage. Therefore, we can infer that the subsequent administration of CUR ABE treatment can be used as a therapeutic strategy for preventing cardiac damage.

    Topics: Animals; Cardiomyopathies; Cholesterol; Curcumin; Fibrosis; Rats; Troponin I

2023
Effect of curcumin on lipid profile, fibrosis, and apoptosis in liver tissue in abemaciclib-administered rats.
    Drug and chemical toxicology, 2023, Volume: 46, Issue:6

    Abemaciclib (ABEM) is an important antitumor agent for breast cancer treatment. However, the side-effects of ABEM are unclear in the liver. This study investigated the protective effect of curcumin (CURC) on liver damage caused by ABEM. The rats were divided into five groups with eight animals in each group; Control, DMSO (150 µL for per rats), CURC, 30 mg/kg/day), ABE (26 mg/kg/day), and ABE + CURC (26 mg/kg/day ABE, 30 mg/kg/day) groups. Injections were administered daily for 28 days. The levels of AST, LDH, HDL, LDL, triglyceride, and total cholesterol in serum, and hepatic tissue fibrosis, caspase-3, Bax, and TNF-α expression were higher in the ABE group compared to the control group (

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cholesterol; Curcumin; Fibrosis; Liver; Liver Diseases; Rats; Triglycerides; Tumor Necrosis Factor-alpha

2023
Beneficial Effects of a Curcumin Derivative and Transforming Growth Factor-β Receptor I Inhibitor Combination on Nonalcoholic Steatohepatitis.
    Diabetes & metabolism journal, 2023, Volume: 47, Issue:4

    Curcumin 2005-8 (Cur5-8), a derivative of curcumin, improves fatty liver disease via AMP-activated protein kinase activation and autophagy regulation. EW-7197 (vactosertib) is a small molecule inhibitor of transforming growth factor β (TGF-β) receptor I and may scavenge reactive oxygen species and ameliorate fibrosis through the SMAD2/3 canonical pathway. This study aimed to determine whether co-administering these two drugs having different mechanisms is beneficial.. Hepatocellular fibrosis was induced in mouse hepatocytes (alpha mouse liver 12 [AML12]) and human hepatic stellate cells (LX-2) using TGF-β (2 ng/mL). The cells were then treated with Cur5-8 (1 μM), EW-7197 (0.5 μM), or both. In animal experiments were also conducted during which, methionine-choline deficient diet, Cur5-8 (100 mg/kg), and EW-7197 (20 mg/kg) were administered orally to 8-week-old C57BL/6J mice for 6 weeks.. TGF-β-induced cell morphological changes were improved by EW-7197, and lipid accumulation was restored on the administration of EW-7197 in combination with Cur5-8. In a nonalcoholic steatohepatitis (NASH)-induced mouse model, 6 weeks of EW-7197 and Cur5-8 co-administration alleviated liver fibrosis and improved the nonalcoholic fatty liver disease (NAFLD) activity score.. Co-administering Cur5-8 and EW-7197 to NASH-induced mice and fibrotic hepatocytes reduced liver fibrosis and steatohepatitis while maintaining the advantages of both drugs. This is the first study to show the effect of the drug combination against NASH and NAFLD. Similar effects in other animal models will confirm its potential as a new therapeutic agent.

    Topics: Animals; Curcumin; Fibrosis; Humans; Liver Cirrhosis; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Transforming Growth Factor beta; Transforming Growth Factors

2023
Proteomic Modulation in TGF-β-Treated Cholangiocytes Induced by Curcumin Nanoparticles.
    International journal of molecular sciences, 2023, Jun-22, Volume: 24, Issue:13

    Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes. Exploiting an in vitro model of transforming growth factor-β (TGF-β)-stimulated cholangiocytes, we applied the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based quantitative proteomic approaches to study the proteome modulation induced by curcumin nanoformulation. Our results confirmed the well-documented anti-inflammatory properties of this nutraceutic, highlighting the induction of programmed cell death as a mechanism to counteract the cellular damages induced by TGF-β. Moreover, curcumin nanoformulation positively influenced the expression of several proteins involved in TGF-β-mediated fibrosis. Given the crucial importance of deregulated cholangiocyte functions during cholangiopathies, our results provide the basis for a better understanding of the mechanisms associated with this pathology and could represent a rationale for the development of more targeted therapies.

    Topics: Anti-Inflammatory Agents; Curcumin; Fibrosis; Humans; Liver; Proteomics; Transforming Growth Factor beta

2023
Dynamic Contrast-Enhanced MRI Assessing Antifibrotic Therapeutic Effects of Pancreatic Fibrosis with Curcumin - An Experimental Study at 11.7 T.
    Academic radiology, 2023, Volume: 30 Suppl 1

    Pancreatic fibrosis is the hallmark of chronic pancreatitis (CP), which is associated with microcirculatory disturbance. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess the perfusion and permeability of the pancreas by providing information about microcirculation. We hypothesize that DCE-MRI parameters can be utilized to assess pancreatic fibrosis and may furthermore provide an opportunity to evaluate response to antifibrotic treatment with curcumin. Our study was to evaluate the feasibility of quantitative DCE-MRI in assessing pancreatic fibrosis and the antifibrotic effect of curcumin in a rat model of CP.. Pancreatic fibrosis was induced by injecting dibutyltin dichloride (DBTC). Seventy rats were randomized to five groups: the control group (n = 10); DBTC for 2 weeks (n = 15); DBTC for 4 weeks (n = 15); DBTC + curcumin for 2 weeks (n = 15); DBTC + curcumin for 4 weeks (n = 15). DCE-MRI was performed at an 11.7 T MR scanner. DCE-MRI quantitative parameters (K. Fifty-three rats survived and underwent MR imaging. K. DCE-MRI parameters (K

    Topics: Animals; Contrast Media; Curcumin; Fibrosis; Magnetic Resonance Imaging; Microcirculation; Rats

2023
Curcumin and PCI-34051 combined treatment ameliorates inflammation and fibrosis by affecting MAP kinase pathway.
    Inflammopharmacology, 2023, Volume: 31, Issue:6

    Bronchoconstriction, along with inflammation and hyperresponsiveness is the characteristic feature associated with asthma, contributing to variable airflow obstruction, which manifests shortness of breath, cough and wheeze, etc. Histone deacetylases 8 (HDAC8) is the member of class I HDAC family and known to regulate microtubule integrity and muscle contraction. Therefore, we aimed to investigate the effects of HDAC8 inhibition in murine model of asthma using Pan-HDAC inhibitor curcumin (CUR) and HDAC8-specific inhibitor PCI-34051 (PCI), alone and in combination.. To develop asthmatic mouse model, Balb/c mice were sensitized and challenged with ovalbumin (OVA). CUR (10 mg/kg, pre, post, alone and combined treatment) and PCI (0.5 mg/kg), were administered through intranasal (i.n) route, an hour before OVA aerosol challenge. Effects of HDAC8 inhibition by CUR and PCI pretreatments were evaluated in terms of inflammation, oxidative stress and fibrosis markers. Efficacy of curcumin post-treatment (CUR(p)) was also evaluated simultaneously.. Inflammatory cell recruitment, oxidative stress (reactive oxygen species, nitric oxide), histamine and Immunoglobulin E (IgE) levels and expression of fibrosis markers including hydroxyproline, matrix metalloproteinases-9 and alpha smooth muscle actin (MMP-9 and α-SMA) were significantly reduced by CUR, CUR(p), PCI-alone and combined treatments. Protein expressions of HDAC8, Nuclear factor-κB (NF-κB) accompanied by MAPKs (mitogen-activated protein kinases) were significantly reduced by the treatments. Structural alterations were examined by histopathological analysis and linked with the fibrotic changes.. Present study indicates protective effects of HDAC8 inhibition in asthma using HDAC8 using CUR and PCI alone or in combination, attenuates airway inflammation, fibrosis and remodeling; hence, bronchoconstriction was accompanied through modulation of MAP kinase pathway.

    Topics: Animals; Asthma; Curcumin; Disease Models, Animal; Fibrosis; Inflammation; Lung; Mice; Mice, Inbred BALB C; Mitogen-Activated Protein Kinases; Ovalbumin

2023
Intranasal curcumin and sodium butyrate modulates airway inflammation and fibrosis via HDAC inhibition in allergic asthma.
    Cytokine, 2022, Volume: 149

    Asthma being an inflammatory disease of the airways lead to structural alterations in lungs which often results in the severity of the disease. Curcumin, diferuloylmethane, is well known for its medicinal properties but its anti-inflammatory potential via Histone deacetylase inhibition (HDACi) has not been revealed yet. Therefore, we have explored here, anti-inflammatory and anti-fibrotic potential of intranasal curcumin via HDAC inhibition and compared its potential with Sodium butyrate (SoB), a known histone deacetylase inhibitor of Class I and II series. Anti-inflammatory potential of SoB, has been investigated in cancer but not been studied in asthma before.. In present study, ovalbumin (OVA) was used to sensitize Balb/c mice and later exposed to (1%) OVA aerosol. Curcumin (5 mg/kg) and Sodium butyrate (50 mg/kg) was administered through intranasal route an hour before OVA aerosol challenge. Efficacies of SoB and Curcumin as HDAC inhibitors were evaluated in terms of different inflammatory parameters like, total inflammatory cell count, reactive oxygen species (ROS), histamine release, nitric oxide and serum IgE levels. Inflammatory cell recruitment was analyzed by H&E staining and structural alterations were revealed by Masson's Trichrome staining of lung sections.. Enhanced Matrix Metalloproteinase-2 and 9 (MMP-2 and MMP-9) activities were observed in bronchoalveolar lavage fluid (BALF) of asthmatic mice by gelatin zymography which was inhibited in both treatment groups. Protein expressions of MMP-9, HDAC 1, H3acK9 and NF-kB p65 were modulated in intranasal curcumin and SoB pretreatment groups.. This is the first report where intranasal curcumin inhibited asthma severity via affecting HDAC 1 (H3acK9) leading to NF-kB suppression in mouse model of allergic asthma.

    Topics: Administration, Intranasal; Animals; Anti-Inflammatory Agents; Asthma; Bronchoalveolar Lavage Fluid; Butyric Acid; Curcumin; Disease Models, Animal; Fibrosis; Histone Deacetylase Inhibitors; Immunoglobulin E; Inflammation; Lung; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Mice, Inbred BALB C; Ovalbumin

2022
FABP3 overexpression promotes vascular fibrosis in Takayasu's arteritis by enhancing fatty acid oxidation in aorta adventitial fibroblasts.
    Rheumatology (Oxford, England), 2022, 07-06, Volume: 61, Issue:7

    To identify the role of fatty acid binding protein 3 (FABP3) in vascular fibrosis in Takayasu's arteritis (TAK) and to explore the underlying molecular mechanism.. The expression of FABP3 and extracellular matrix proteins (ECMs) were detected in aorta tissues from TAK patients (n = 12) and healthy controls (n = 8) by immunohistochemistry. The concentration of serum proteins was determined by ELISA. CCK8 and Ki67 staining were used to measure aorta adventitial fibroblast (AAF) proliferation. Widely targeted lipidomic profiling was used to screen for associated metabolic pathways. Changes in ECMs and fatty acid oxidation (FAO)-related enzymes were determined by RT-qPCR and Western blot. The interactions between FABP3 and these enzymes were explored with a co-immunoprecipitation (Co-IP) assay.. The expression of FABP3 was increased in the thickened adventitia of TAK patients and was positively correlated with the serum expression of ECMs. FABP3 knockdown inhibited AAF proliferation and ECM production, whereas FABP3 overexpression enhanced these processes. Further analysis revealed that FABP3 upregulation promoted carnitine palmitoyltransferase 1A and carnitine/acylcarnitine carrier protein (CACT) expression, two key enzymes in FAO, as well as adenosine triphosphate (ATP) levels. FABP3 and CACT were co-localized in the adventitia and bound to each other in AAFs. Etomoxir reversed the enhanced FAO, ATP production, AAF proliferation and ECM production mediated by FABP3 upregulation. Treatment with 60 g/day curcumin granules for 3 months reduced the level of serum FABP3. Curcumin also inhibited vascular fibrosis by reducing FABP3-enhanced FAO in AAFs.. Elevated FABP3 expression accelerated vascular fibrosis in TAK, which was likely mediated by promoting FAO in AAFs.

    Topics: Adenosine Triphosphate; Adventitia; Aorta; Curcumin; Fatty Acid Binding Protein 3; Fatty Acids; Fibroblasts; Fibrosis; Humans; Takayasu Arteritis

2022
Curcumin, novel application in reversing myocardial fibrosis in the treatment for atrial fibrillation from the perspective of transcriptomics in rat model.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 146

    In order to explore the possible mechanism of curcumin in the treatment of AF, we focused on the myocardial fibrosis in the pathogenesis of atrial fibrillation to explore whether curcumin could play a role in the treatment of AF by reducing myocardial fibrosis.Rats were given daily gavage of saline (control and AF groups) or curcumin (4 mL/kg, concentration: 50 mg/mL, curcumin groups) during days 4-28. The rat model of AF was induced by Ach - CaCl

    Topics: Animals; Atrial Fibrillation; Curcumin; Disease Models, Animal; Fibrosis; Heart Atria; Myocardium; Rats; Rats, Sprague-Dawley; Transcriptome; Transforming Growth Factor beta1

2022
[Curcumin improves cardiac fibrosis by inhibiting endothelial-mesenchymal transition through NRF2-DDAH-ADMA-NO pathway].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2022, Volume: 47, Issue:3

    The present study analyzed the correlations between curcumin(Cur), nuclear factor E2 related factor 2(NRF2)-dimethylarginine dimethylaminohydrolase(DDAH)-asymmetric dimethylarginine(ADMA)-nitric oxide(NO) pathway, and endothelial-mesenchymal transition(EndMT) based on SD rats with cardiac fibrosis, and explored the effect and mechanism of Cur in resisting cardiac fibrosis to provide an in-depth theoretical basis for its clinical application in the treatment of heart failure. The cardiac fibrosis model was induced by subcutaneous injection of isoprenaline(Iso) in rats. Thirty-two rats were randomly divided into a control group, a model group, a low-dose Cur group(100 mg·kg~(-1)·d~(-1)), and a high-dose Cur group(200 mg·kg~(-1)·d~(-1)), with eight in each group. After 21 days of treatment, cardiac function was detected by echocardiography, degree of cardiac fibrosis by Masson staining, expression of CD31 and α-SMA by pathological staining, expression of VE-cadherin, vimentin, NRF2, and DDAH by Western blot, and ADMA level by HPLC. Compared with the model group, the Cur groups showed alleviated cardiac fibrosis, accompanied by increased CD31 and VE-cadherin expression and decreased α-SMA and vimentin expression, indicating relieved EndMT. Additionally, DDAH and NRF2 levels were elevated and ADMA and NO expression declined. Cur improves cardiac fibrosis by inhibiting EndMT presumedly through the NRF2-DDAH-ADMA-NO pathway.

    Topics: Amidohydrolases; Animals; Curcumin; Fibrosis; NF-E2-Related Factor 2; Nitric Oxide; Rats; Rats, Sprague-Dawley

2022
Effect of exercise and curcumin on cardiomyocyte molecular mediators associated with oxidative stress and autophagy in aged male rats.
    Microvascular research, 2022, Volume: 143

    Aging can origin changes in the heart that may increase risk of developing cardiovascular disease. This study aimed to characterize autophagy alterations and related molecular mediators in the heart tissue in the aging alone or in combination with exercise and curcumin treatment.. Seven young and twenty-eight elderly male Wistar rats were assigned into five groups, namely: young control, age, exercise, curcumin, and curcumin+exercise. Aged rats in exercise group run on treadmill (17 m/min) and in the curcumin group received curcumin (50 mg/kg) by gavage daily for 8 weeks for 2 months. At the end, heart samples were collected and used for determination of autophagy by immunostaining for LC3-phosphatidylethanolamine conjugate (LC3-II), apoptosis by TUNEL assay, Malondialdehyde (MDA) level by enzymatic assay and determination of mediators' molecules by ELISA for NADPH Oxidase 4 (NOX4), sirtuin 1 (SIRT-1), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-Ƙb) protein levels and Sequestosome-1 (P62). Also, histological changes such as fibrosis evaluated by Masson trichrome staining.. Our results showed that autophagy, SIRT-1 level were significantly decreased and MDA, NOX4, p-NF-Ƙb and P62 levels were significantly increased in heart of aged group compared to young group. Also, significant increased apoptosis and fibrosis levels in the heart of aged rats were observed compared with young rats, whereas, these undesirable changes were improved by exercise and curcumin. Also, combination therapy of aged rats with curcumin and exercise showed more significant prominent effect on molecular mediators and histological changes in the heart compared with monotherapy.. These findings indicate that stress oxidative increase and autophagy decrease in the heart tissue of aged rats. The age induced the mentioned changes in the heart may in part be associated with down-expression of SIRT-1 and overexpression of NOX4 proteins. It was also showed that these age induced effects can be alleviated by treatment with exercise and curcumin. Since NF-Ƙb increased in both the age and treatment groups, it seems the age heart increased NF-Ƙb to be due to a compensatory mechanism.

    Topics: Animals; Autophagy; Curcumin; Fibrosis; Male; Myocytes, Cardiac; NF-kappa B; Oxidative Stress; Rats; Rats, Wistar; Sirtuin 1

2022
Effect of chitosan and curcumin nanoparticles against skeletal muscle fibrosis at early regenerative stage of glycerol-injured rat muscles.
    BMC musculoskeletal disorders, 2022, Jul-14, Volume: 23, Issue:1

    Chitosan and curcumin are natural products that have a wide range of beneficial effects including wound healing. However, their high molecular weight and poor water solubility limit their applications.. Therefore, the current study aims to evaluate the effects of chitosan (Cs) and curcumin (Cn) nanoparticles (NPs) on fibrosis and regeneration of glycerol-injured muscle.. Muscle injury was induced by intramuscular injection of glycerol into the tibialis anterior muscle of rats. Cs-NPs and Cn-NPs were administered at different doses intraperitoneally after injury. Injured muscles were collected at day 7 after injury, and muscle fibrosis and regeneration were assessed.. The present results revealed that Cs-NPs and Cn-NPs treatment significantly decreased fibrosis index and increased the average myotube diameter with shifting of the distribution of myotube diameters towards larger diameters in a dose-dependent manner. Immunohistochemical analysis revealed that Cs-NPs and Cn-NPs treatment significantly decreased the number of CD-68. To our knowledge, this is the first study to document the effects of Cs-NPs in injured muscles. The results of study might be a novel approach to attenuate muscle fibrosis in humans using curcumin and chitosan nanoparticles.

    Topics: Animals; Chitosan; Curcumin; Drug Carriers; Fibrosis; Glycerol; Humans; Muscle, Skeletal; Muscular Diseases; Nanoparticles; Rats; Regeneration

2022
Folic acid-targeted pluronic F127 micelles improve oxidative stress and inhibit fibrosis for increasing AKI efficacy.
    European journal of pharmacology, 2022, Sep-05, Volume: 930

    The oxidative stress and activation of the fibrosis pathway are essential pathological mechanisms of acute kidney injury (AKI). In this article, we designed a drug delivery system that could effectively improve oxidative stress and relieve fibrosis by the combination of precise targeting, solubilization, and reducing the toxicity of nano-transport system to strengthen the efficacy of AKI. Folic acid (FA) was used as the targeting molecule, and curcumin (Cur) and resveratrol (Res), which are Chinese medicine monomers with anti-inflammatory and antioxidant effects, were used as model drugs. Here, the targeting nanosystem (Cur/Res@FA-F127/TPGS) co-loaded with Cur and Res was successfully synthesized. Finally, the comprehensive therapeutic effect of the nanosystem was evaluated through the targeted and pharmacodynamic researches on the AKI models induced by cisplatin (CDDP) in vitro and in vivo. The studies in vitro proved that the nanosystem could not only specifically target HK-2 cells and promote the effective accumulation of Cur and Res in the kidney, but also effectively improve oxidative stress by eliminating reactive oxygen species (ROS), stabilizing mitochondrial membrane potential (MMP), and reducing the expression of apoptosis-related proteins. The studies in vivo showed that the nanosystem could effectively play the role of anti-oxidation, anti-inflammatory and alleviate fibrosis to reduce the apoptosis and necrosis of renal tubular cells. The nanosystem could coordinately repair damaged HK-2 cells by improving oxidative stress, inhibiting inflammation and tissue fibrosis, which provided a new idea for the treatment of AKI.

    Topics: Acute Kidney Injury; Apoptosis; Cisplatin; Curcumin; Fibrosis; Folic Acid; Humans; Micelles; Oxidative Stress; Poloxamer; Resveratrol

2022
Dietary AhR Ligands Have No Anti-Fibrotic Properties in TGF-β1-Stimulated Human Colonic Fibroblasts.
    Nutrients, 2022, Aug-09, Volume: 14, Issue:16

    Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD) patients without specific treatment. Aryl hydrocarbon receptor (AhR) activation is associated with better outcomes in intestinal inflammation. Development of novel therapies targeting fibrogenic pathways is required and we aimed to screen dietary AhR ligands for their anti-fibrotic properties in TGF-β1-stimulated human colonic fibroblast cells.. The study was conducted using TGF-β1-stimulated CCD-18Co, a human colonic fibroblast cell line in response to increased concentrations of dietary ligands of AhR such as FICZ, ITE, L-kynurenine and curcumin. Fibrosis markers such as α-SMA, COL1A1, COL3A1 and CTGF were assessed. AhR and ANRT RNA were evaluated.. TGF-β1 at 10 ng/mL significantly induced mRNA levels for ECM-associated proteins such as CTGF, COL1A1 and COL3A1 in CCD-18Co cells. FICZ from 10 to 1000 nM, L-kynurenine from 0.1 to 10 μM, ITE from 1 to 100 μM or curcumin from 5 to 20 μM had no significant effect on fibrosis markers in TGF-β1-induced CCD-18Co.. Our data highlight that none of the tested dietary AhR ligands had an effect on fibrosis markers in TGF-β1-stimulated human colonic fibroblast cells in our experimental conditions. Further studies are now required to identify novel potential targets in intestinal fibrosis.

    Topics: Curcumin; Fibroblasts; Fibrosis; Humans; Kynurenine; Receptors, Aryl Hydrocarbon; Transforming Growth Factor beta1

2022
Curcumin analog JM-2 alleviates diabetic cardiomyopathy inflammation and remodeling by inhibiting the NF-κB pathway.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 154

    Cardiac inflammation is an important pathological process in diabetic cardiomyopathy (DCM). Curcumin is a natural compound found in the rhizome of Curcuma longa and has been shown to possess multifunctional bioactivities. In the present study, we identified a new curcumin-derived compound, JM-2, and investigated its therapeutic effects against DCM in mouse models of streptozotocin-induced type 1 diabetes mellitus (T1DM) and HFD-induced type 2 diabetes (T2DM). Treatment with JM-2 (10 mg/kg) prevented cardiac functional and structural deficits effectively and reduced cardiac inflammation and fibrosis. JM-2 administration attenuated DCM by inhibiting nuclear factor kappa-B (NF-κB) activation in the heart of both models. In addition, treatment with JM-2 completely prevented the increase in proinflammatory factors and macrophage infiltration in T1DM and T2DM mice. RNA-seq analysis showed that the anti-inflammatory activity of JM-2 was associated with the inhibition of NF-κB activation. In vitro, JM-2 suppressed high glucose (HG)-induced myocardial hypertrophy and fibrosis in H9c2 cells, accompanied by inhibition of HG-induced NF-κB activation. Collectively, our results showed that JM-2, a new curcumin analog, provides strong protection against DCM via inhibition of the NF-κB-mediated inflammation. In summary, our data suggest that the curcumin analog JM-2 may be a potential therapeutic agent for DCM.

    Topics: Animals; Curcumin; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Fibrosis; Inflammation; Mice; Myocytes, Cardiac; NF-kappa B

2022
Phenytoin induces connective tissue growth factor (CTGF/CCN2) production through NADPH oxidase 4-mediated latent TGFβ1 activation in human gingiva fibroblasts: Suppression by curcumin.
    Journal of periodontal research, 2022, Volume: 57, Issue:6

    Gingival overgrowth (GO) is a common side effect of some drugs such as anticonvulsants, immunosuppressant, and calcium channel blockers. Among them, the antiepileptic agent phenytoin is the most common agent related to this condition due to its high incidence. Transforming growth factor β (TGFβ) importantly contributes to the pathogenesis of GO. Connective tissue growth factor (CTGF or CCN2) is a key mediator of tissue fibrosis and is positively associated with the degree of fibrosis in GO. We previously showed that Src, c-jun N-terminal kinase, and Smad3 mediate TGFβ1-induced CCN2 protein expression in human gingival fibroblasts (HGFs). This study investigates whether phenytoin can induce CCN2 synthesis through activated latent TGFβ in HGFs and its mechanisms.. CCN2 synthesis, latent TGFβ1 activation, and cellular reactive oxygen species (ROS) generation in HGFs were studied using western blot analysis, a TGFβ1 Emax® ImmunoAssay System, and 2',7'-dichlorodihydrofluorescein diacetate (an oxidation-sensitive fluorescent probe), respectively.. Phenytoin significantly stimulated CCN2 synthesis, latent TGFβ1 activation, and ROS generation in HGFs. Addition of an TGFβ-neutralizing antibody, TGFβ receptor kinase inhibitor SB431542, and Smad3 inhibitor SIS3 completely inhibited phenytoin-induced CCN2 synthesis. General antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor diphenylene iodonium, and specific NOX4 inhibitor plumbagin almost completely suppressed phenytoin-induced total cellular ROS and latent TGFβ1 activation. Curcumin dose-dependently decreased phenytoin-induced TGFβ1 activation and CCN2 synthesis in HGFs.. Our findings indicated that NOX4-derived ROS play pivotal roles in phenytoin-induced latent TGFβ1 activation. Molecular targeting the phenytoin/NOX4/ROS/TGFβ1 pathway may provide promising strategies for the prevention and treatment of GO. Curcumin-inhibited phenytoin-induced CCN2 synthesis is caused by the suppression of latent TGFβ1 activation.

    Topics: Cells, Cultured; Connective Tissue Growth Factor; Curcumin; Fibroblasts; Fibrosis; Gingiva; Gingival Overgrowth; Humans; NADPH Oxidase 4; Phenytoin; Reactive Oxygen Species; Transforming Growth Factor beta1

2022
A biomimetic double network hydrogel ameliorates renal fibrosis and promotes renal regeneration.
    Journal of materials chemistry. B, 2022, 11-23, Volume: 10, Issue:45

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are serious global public health issues. Both interconnect closely, and AKI-CKD transition significantly increases the morbidity of CKD and inevitably progresses to end stage renal disease. However, with the current drug delivery system it is hard to achieve precise delivery and apply it to clinical practice due to the local fibrotic milieu of the AKI-CKD transition procedure. Consequently, new treatment options to halt or even reverse AKI-CKD transition are urgently needed. Curcumin and Ac-SDKP were proved to be capable of ameliorating renal injury and restoring renal biological function. However, due to the water-insolubility, poor absorption and ease of degradation features, their utilization based on traditional drug delivery systems was still confined to the laboratory. A new approach for the targeted delivery of curcumin and Ac-SDKP into kidneys is needed. Hydrogels, owing to their capability of targeted-drug delivery and bio-favorable nature, emerge as a promising resolution. Herein, we developed a bioinspired double network hydrogel scaffold loaded with curcumin and

    Topics: Acute Kidney Injury; Animals; Biomimetics; Curcumin; Fibrosis; Hydrogels; Kidney; Rats; Regeneration; Renal Insufficiency, Chronic

2022
Curcumin mediates repulsive guidance molecule B (RGMb) in the treatment mechanism of renal fibrosis induced by unilateral ureteral obstruction.
    Renal failure, 2021, Volume: 43, Issue:1

    In this study, we explored the role and mechanism of repulsive guidance molecule B (RGMb, also known as Dragon) in the protective effects of curcumin against renal fibrosis and verified Dragon's effect on renal tubular epithelial cell apoptosis and cell programmability. Unilateral ureteral obstruction (UUO) was surgically induced in rats to establish a model of renal interstitial fibrosis (RIF). The rats were then treated with curcumin. Curcumin prominently decreased the serum creatinine (SCr) and blood urea nitrogen (BUN) levels, and also improved the tubular injury in the UUO-induced rats. Curcumin significantly downregulated the TGF-β1, P-Smad2/3, cleaved caspase-3, cleaved caspase-8 and Dragon levels. Dragon knockdown also markedly reduced the TGF-β1, P-Smad2/3, Smad2/3, cleaved caspase-3, cleaved caspase-8, fibronectin, collagen I, collagen IV, vimentin, and α-SMA expression levels. Conversely, Dragon overexpression caused higher expression levels of these proteins, and curcumin reversed this effect. Furthermore, Dragon knockdown increased the E-cadherin levels, whereas Dragon overexpression decreased these levels. Overexpressing Dragon significantly decreased the cell viability, and curcumin reversed this effect. In conclusion, curcumin acted on Dragon and attenuated RIF in UUO rat models. Curcumin downregulated the TGF-β1/Smad signaling pathway and inhibited Dragon and fibrogenic molecules in both rats and HK-2 cells.

    Topics: Animals; Blood Urea Nitrogen; Caspase 3; Creatinine; Curcumin; Fibrosis; GPI-Linked Proteins; Humans; Kidney; Male; Nerve Tissue Proteins; Rats; Rats, Sprague-Dawley; Receptors, Cell Surface; Signal Transduction; Transforming Growth Factor beta1; Ureteral Obstruction

2021
Curcumin Targets p53-Fibrinolytic System in TGF-β1 Mediated Alveolar Epithelial Mesenchymal Transition in Alveolar Epithelial Cells.
    Endocrine, metabolic & immune disorders drug targets, 2021, Volume: 21, Issue:8

    We aim to investigate curcumin interaction with p53-fibrinolytic system, smad dependent and independent pathways underlying their prime role during lung injury and fibrosis.. Curcumin, an active component of Curcuma longa plant, substantially modulates respiratory conditions. TGF-β1 plays a central role in lung remodeling by balancing extracellular matrix (ECM) production and degradation, which is a hallmark for alveolar EMT. However, the crosstalk of curcumin is not known yet with TGF- β1 mediated p53-Fibrinolytic system regulating alveolar EMT leading to IPF. In the present study, the potential molecular mechanism of curcumin in TGF-β1 mediated p53-fibrinolytic system in basal alveolar epithelial cells was explored.. To understand the potential molecular mechanism of curcumin in TGF-β1 mediated p53-fibrinolytic system in basal alveolar epithelial cells.. Basal alveolar epithelial cells were treated with TGF- β1 to induce alveolar EMT and after 24 hrs curcumin was administered to study its anti-fibrotic effects. Molecular techniques like immunoblot, RT-PCR and immunofluorescence were performed to assess the anti-fibrotic role of curcumin on EMT markers, IL-17A, p53-smad interaction to investigate the anti-fibrotic role of curcumin.. The results indicated that TGF-β1-induced EMT in A549 cells exhibited altered expression of the IL-17A, p53-fibrinolytic markers and EMT markers at the mRNA and protein level. Intervention with curcumin attenuated alveolar EMT and inactivated TGF-β1 induced Smad/non Smad signaling pathways via blocking p53-fibrinolytic system.. This study provides the first evidence of the dynamic response of curcumin on TGF- β1 mediated p53-fibrinolytic system during alveolar injury in vitro.

    Topics: A549 Cells; Acute Lung Injury; Alveolar Epithelial Cells; Cells, Cultured; Curcuma; Curcumin; Epithelial-Mesenchymal Transition; Fibrinolysis; Fibrosis; Humans; Lung; Plant Extracts; Signal Transduction; Transforming Growth Factor beta1; Tumor Suppressor Protein p53

2021
The Preventive Effect of Curcumin on the Experimental Rat Epidural Fibrosis Model.
    World neurosurgery, 2021, Volume: 145

    The aim of the study was to evaluate the effect of systemically administrated curcumin on the prevention of peridural fibrotic tissue and adhesion formation in a rat laminectomy model.. Thirty-two Wistar albino rats were randomly selected and equally divided into 4 groups as follows: negative control group (group I) did not undergo operation; positive control group (group II) underwent laminectomy without treatment; group III (low-dose curcumin; 100 mg/kg); and group IV (high-dose curcumin; 200 mg/kg). Curcumin was administered intraperitoneally per day for 7 days after surgery starting from day 0. Twenty-eight days after surgery, T12 and L4 vertebral columns, paraspinal tissues, and epidural scar tissue were dissected en bloc and prepared for histopathologic examinations. All specimens were examined for inflammation, epidural fibrosis (EF), foreign body reaction, medulla spinalis retraction, granulation tissue, and arachnoid involvement. A Kruskal-Wallis test followed by a Dunn multiple comparison test were used for statistical analysis, and a P value <0.05 was considered as statistically significant.. Curcumin treatment significantly reduced inflammation, foreign body reaction, granulation tissue formation, medulla spinalis retraction, and EF formation compared with positive control group (P < 0.05); however, no significant differences were found between the 2 groups that received different doses of curcumin.. The results of the present study showed that systemic administration of curcumin was effective in reducing EF formation, inflammation, granulation tissue formation, medulla spinalis retraction, and foreign body reaction in the laminectomy area. Our results suggest that antiinflammatory activities of curcumin are beneficial for attenuation of EF formation.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Disease Models, Animal; Epidural Space; Female; Fibrosis; Foreign-Body Reaction; Inflammation; Laminectomy; Meninges; Rats; Rats, Wistar; Tissue Adhesions

2021
Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats.
    Basic & clinical pharmacology & toxicology, 2021, Volume: 128, Issue:4

    Renal interstitial fibrosis (RIF) is the leading cause of end-stage renal disease, partly because of the lack of effective treatments. Curcumin, the primary active ingredient in turmeric, reportedly exerts potent antifibrotic effects. This study investigated the effects of curcumin on RIF in unilateral ureteral obstruction (UUO) rats and characterized the underlying action mechanism. UUO rats were treated with curcumin for 7 and 14 d. Renal fibrosis was evaluated through haematoxylin-eosin staining, Masson staining, and type I and III collagen expression. Autophagy and mitochondria were observed through scanning electron microscopy. NLRP3 inflammasomes, mitochondria, and autophagy-related proteins were detected through Western blotting. Mitochondrial respiratory enzyme activity was assessed spectrophotometrically. Compared with UUO rats, renal fibrosis was attenuated and NLRP3 inflammasome activation was inhibited in curcumin-treated rats. Furthermore, mitochondrial dysfunction was ameliorated and the LC3B/LC3A ratio and Beclin-1 expression were increased in curcumin-treated rats. Additionally, curcumin inhibited the PI3K/AKT/mTOR pathway. These results indicate that curcumin is a promising treatment agent for RIF, and its antifibrotic effects may be mediated by the inhibition of NLRP3 inflammasome activity through the regulation of autophagy and protection of mitochondrial function in UUO rats.

    Topics: Animals; Autophagy; Curcumin; Disease Models, Animal; Fibrosis; Humans; Inflammasomes; Kidney Failure, Chronic; Kidney Tubules; Male; Mitochondria; NLR Family, Pyrin Domain-Containing 3 Protein; Rats; Ureteral Obstruction

2021
Iron biodistribution profile changes in the rat spleen after administration of high-fat diet or iron supplementation and the role of curcumin.
    Journal of molecular histology, 2021, Volume: 52, Issue:4

    Curcumin as active metal chelating and antioxidant agent has a potential role in metal reduction and free radicals' neutralization in tissues. Of note, long-term administration of high fat diet (HFD) is considered as a main factor of blood serum iron deficiency. This study aimed to investigate the biodistribution profiles of iron in the spleen after long-term administration of HFD along with iron supplementation. Furthermore, the ameliorative role of curcumin to reduce iron accumulation level and improve the histological abnormalities produced by iron in spleen will be evaluated in the rats. Treated albino rats of this experiment were divided into six groups. Group I was a control group where group II was treated with HFD. Group III and group IV were treated with combination of HFD and curcumin or HFD and iron supplement respectively. Additionally, group V and group VI were treated with combination of HFD, iron supplement and curcumin or curcumin only respectively. Mainly histological analysis was used to investigate iron biodistribution and induced abnormalities in spleen under light microscope. The histochemical specific staining of iron in the spleen showed different biodistribution profiles of iron in the spleen. Administration of the HFD or HFD and iron supplementation increased the iron accumulation in the spleen. Where, curcumin administration with HFD (Group III) or with HFD and iron supplementation (Group V) significantly reduced the iron levels in the spleen. The splenic tissue inflammation, cellular apoptosis and fibrosis produced by higher iron accumulation was ameliorated after administration of curcumin supplementation as shown in the animals treated with HFD/curcumin (Group III) or HFD/iron supplement/curcumin (Group V). This study recommended that, it is preferable to use iron supplementation along with curcumin supplement for less than 4 months to avoid additional iron accumulation in the healthy organs.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Diet, High-Fat; Dietary Supplements; Ferritins; Fibrosis; Hepcidins; Iron; Lipids; Male; Rats; Spleen; Tissue Distribution

2021
Curcumin Blunts IL-6 Dependent Endothelial-to-Mesenchymal Transition to Alleviate Renal Allograft Fibrosis Through Autophagy Activation.
    Frontiers in immunology, 2021, Volume: 12

    Fibrosis contributes to graft loss in chronic renal allograft injury. Endothelial-to-mesenchymal transition (EndMT) plays an important role in the development of fibrosis following kidney transplantation. Autophagy plays an important role in the homeostasis of diverse cell types including endothelial cells. Here we demonstrate that inhibition of autophagy by treatment with 3-methyladenine (3-MA) or by silencing autophagy-related (ATG)5 promoted interleukin (IL)-6-dependent EndMT in human umbilical vein endothelial cells (HUVECs) and human renal glomerular endothelial cells (HRGECs), and autophagy inactivation was associated with EndMT in patients with chronic allograft dysfunction. IL-6 level was significantly higher in the culture medium of HUVECs transfected with ATG5 siRNA or treated with 3-MA compared to the respective control groups. IL-6 application induced EndMT in HUVECs and HRGECs, whereas antibody-mediated neutralization of IL-6 suppressed EndMT induced by ATG5 silencing. The protective role of curcumin (Cur) against allograft fibrosis was confirmed in a rat kidney transplantation model of F344 donors to Lewis recipients. Curcumin-a natural polyphenol compound with known antifibrotic effects in various tissues-alleviated IL-6-induced EndMT and promoted autophagy in the allografted organ and in HUVECs. This is the first demonstration of the role of autophagy in renal allograft fibrosis; our findings indicate that curcumin can alleviate chronic renal allograft injury by suppressing IL-6-dependent EndMT

    Topics: Adult; Allografts; Animals; Autophagy; Biomarkers; Biopsy; Curcumin; Disease Models, Animal; Epithelial-Mesenchymal Transition; Fibrosis; Human Umbilical Vein Endothelial Cells; Humans; Immunohistochemistry; Immunosuppressive Agents; Interleukin-6; Kidney Diseases; Kidney Transplantation; Male; Models, Biological; Rats

2021
Therapeutic effect of modulating the NLRP3-regulated transforming growth factor-β signaling pathway on interstitial cystitis/bladder pain syndrome.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 138

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a disorder with complex pathogenesis and lacks effective treatment. Chronic inflammation is the main pathogenesis of Hunner-type IC/BPS. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome-related transforming growth factor-β (TGF-β)/Smad signaling pathway plays a crucial role in inflammation-related tissue fibrosis. Lipopolysaccharide (LPS) and protamine sulfate (LPS/PS) were instilled into the mouse bladder twice a week for 5 consecutive weeks to establish a chronic inflammation-induced IC/BPS model (LPS/PS model). Following LPS/PS treatment, curcumin (oral, 100 mg/kg; a potent NLRP3 modulator) was administered for 2 weeks in the curcumin treatment group, and normal saline was used for the sham group. Bladder function was evaluated by performing the voiding spot assay and examining the status of urothelial denudation and fibrosis in bladder tissues. The expression of NLRP3 inflammasome, interleukin-1β, TGF-β, Smad, vimentin, and E-cadherin in bladder tissues was evaluated through immunohistochemistry staining. Results revealed that the repeated instillation of LPS/PS leads to voiding dysfunction, bladder urothelium denudation, and detrusor muscle fibrosis through the upregulation of the NLRP3 inflammasome/IL-1β-related TGF-β/Smad pathway and the increased epithelial-mesenchymal transition process in bladder tissues. The downregulation of the NLRP3 inflammasome/IL-1β-related TGF-β/Smad pathway in bladder tissues through curcumin effectively mitigated bladder injury in the LPS/PS model. In conclusion, the NLRP3 inflammasome/IL-1β-related TGF-β/Smad pathway plays a crucial role in bladder injury in the LPS/PS model, and modulation of this pathway, such as by using curcumin, can effectively mitigate the sequelae of chronic inflammation-induced IC/BPS.

    Topics: Animals; Anti-Inflammatory Agents; Curcumin; Cystitis, Interstitial; Disease Models, Animal; Epithelial-Mesenchymal Transition; Female; Fibrosis; Inflammasomes; Mice, Inbred BALB C; NLR Family, Pyrin Domain-Containing 3 Protein; Signal Transduction; Transforming Growth Factor beta1; Urinary Bladder; Urination; Urodynamics

2021
Curcumin, an Inhibitor of p300-HAT Activity, Suppresses the Development of Hypertension-Induced Left Ventricular Hypertrophy with Preserved Ejection Fraction in Dahl Rats.
    Nutrients, 2021, Jul-29, Volume: 13, Issue:8

    Topics: Acetylation; Animals; Blood Pressure; Curcumin; Fibrosis; Heart Failure; Hypertension; Hypertrophy, Left Ventricular; Male; Myocytes, Cardiac; Rats; Rats, Inbred Dahl; Sodium Chloride, Dietary; Stroke Volume

2021
Arsenic trioxide and curcumin attenuate cisplatin-induced renal fibrosis in rats through targeting Hedgehog signaling.
    Naunyn-Schmiedeberg's archives of pharmacology, 2020, Volume: 393, Issue:3

    Renal fibrosis is a progressive process resulting from a sustained injury that may ultimately cause renal failure. Cisplatin is an antitumor drug that induces renal injury and nephrotoxicity and is widely employed as a model for acute and chronic renal injury. Several signaling pathways are implicated in fibrogenic cell activation among which is Hedgehog (Hh) signaling. We here investigated the effects of arsenic trioxide (Ars) and curcumin in ameliorating cisplatin-induced kidney fibrosis via regulating Hh signaling. Cisplatin (4.5 mg/kg) was administered in Sprague-Dawley rats for two consecutive days and renal fibrosis was induced after 21 days. Once renal fibrosis was confirmed, Ars (3.5 mg/kg/day, orally) and curcumin (200 mg/kg/day, orally) were administered daily for another 21 days. Ars and curcumin corrected kidney function markers as creatinine clearance and urea nitrogen. Both agents ameliorated fibrosis as shown by lowered TGF-β1 mRNA levels, α-SMA protein levels, and hydroxylproline content. Cisplatin-activated Hh signaling which was blocked by both Ars and curcumin as demonstrated by decreased mRNA levels of Shh, Smo, and Ptch and suppressed renal Gli1 and Gli2 protein levels. Our results indicate new therapeutic roles for Ars and curcumin and suggest that blocking Hh signaling may be a promising approach for alleviating renal fibrosis. Symbols indicate α-SMA, alpha-smooth muscle actin; TGF-β, transforming growth factor-beta; Ptch, patched; Smo, smoothened; Shh, sonic hedgehog; Ihh, Indian hedgehog; Dhh, desert hedgehog; and SUFU, suppressor of fused.

    Topics: Animals; Antineoplastic Agents; Arsenic Trioxide; Cisplatin; Curcumin; Drug Delivery Systems; Drug Therapy, Combination; Fibrosis; Hedgehog Proteins; Kidney Diseases; Male; Rats; Rats, Sprague-Dawley; Signal Transduction

2020
Curcumin attenuates endothelial cell fibrosis through inhibiting endothelial-interstitial transformation.
    Clinical and experimental pharmacology & physiology, 2020, Volume: 47, Issue:7

    Curcumin (Cur) has various pharmacological activities, including anti-inflammatory, antiapoptotic and anticancer effects. However, there is no report on the effect of Cur on endothelial cell fibrosis. This study was designed to investigate the effect and mechanism of Cur on endothelial cell fibrosis. An endothelial cell fibrosis model was established by using transforming growth factor (TGF) induction. Proliferation assays, qRT-PCR, western blotting and immunostaining were performed to investigate the effects and mechanism of Cur on endothelial cell fibrosis. We found that in human umbilical vein endothelial cells (HUVECs), TGF-β1 treatment significantly decreased the expression of nuclear factor erythroid-2-related factor 2 (NRF-2), dimethylarginine dimethylaminohydrolase-1 (DDAH1), and VE-cadherin, the secretion of cellular nitric oxide (NO) and the activity of nitrous oxide synthase (NOS), while asymmetric dimethylarginine (ADMA) and the release of inflammatory factors were elevated. Immunofluorescence showed decreased CD31 and increased α-smooth muscle actin (α-SMA). Overexpression of NRF-2 significantly attenuated the effects of TGF-β1, while downregulation of DDAH1 potently counteracted the effect of NRF-2. In addition, ADMA treatment resulted in similar results to those of TGF-β1, and Cur significantly attenuated the effect of TGF-β1, accompanied by increased VE-cadherin, DDAH1 and NRF-2 and decreased matrix metalloproteinase-9 (MMP-9) and extracellular regulated protein kinases 1/2 (ERK1/2) phosphorylation. The NRF-2 inhibitor ML385 had the opposite effect as that of Cur. These results demonstrated that Cur inhibits TGF-β1-induced endothelial-to-mesenchymal transition (EndMT) by stimulating DDAH1 expression via the NRF-2 pathway, thus attenuating endothelial cell fibrosis.

    Topics: Curcumin; Down-Regulation; Epithelial-Mesenchymal Transition; Fibrosis; Human Umbilical Vein Endothelial Cells; Humans; Phosphorylation; Signal Transduction

2020
Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways.
    Pharmaceutical biology, 2020, Volume: 58, Issue:1

    Renal interstitial fibrosis (RIF) is characterized by the accumulation of inflammatory cytokines and epithelial-mesenchymal transition (EMT). Curcumin exerts antifibrogenic, anti-inflammatory and antiproliferative effects.. To explore the mechanisms underlying the effects of curcumin on RIF.. Eight-week-old male C57BL/6 mice were intragastrically administered curcumin (50 mg/kg/day) for 14 days after undergoing unilateral ureteral obstruction (UUO) operations. Renal function (blood urea nitrogen [BUN] and serum creatinine [Scr]) and inflammatory cytokine levels were tested using colorimetric assays and ELISA, respectively. EMT markers were evaluated through immunohistochemistry, western blotting and qPCR. Transforming growth factor beta 1 (TGF-β1; 10 ng/mL) and lipopolysaccharides (LPS; 100 ng/mL) were used to stimulate EMT and an inflammatory response in human renal proximal tubular epithelial (HK-2) cells, respectively, for further investigation.. Curcumin repressed EMT and the inflammatory response by inhibiting the TLR4/NF-κB and PI3K/AKT pathways, demonstrating its potential utility in RIF treatment.

    Topics: Animals; Anti-Inflammatory Agents; Blood Urea Nitrogen; Cell Line; Curcumin; Disease Models, Animal; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Kidney Diseases; Male; Mice, Inbred C57BL; NF-kappa B; Phosphatidylinositol 3-Kinase; Proto-Oncogene Proteins c-akt; Toll-Like Receptor 4; Ureteral Obstruction

2020
Bisdemethoxycurcumin protects against renal fibrosis via activation of fibroblast apoptosis.
    European journal of pharmacology, 2019, Mar-15, Volume: 847

    Renal fibrosis is the common final outcome of nearly all progressive chronic kidney diseases (CKD) that eventually develop into end-stage renal failure, which threatens the lives of patients. Currently, there are no effective drugs for the treatment of renal fibrosis. However, studies have shown that certain plant natural products have a fibrosis-alleviating effect. Thus, we have screened a large number of natural products for their ability to protect against renal fibrosis and found that bisdemethoxycurcumin has a good therapeutic effect in renal fibrosis according to the data obtained in a mouse model of unilateral ureteral obstruction (UUO). The results indicate that bisdemethoxycurcumin can efficiently attenuate renal fibrosis induced by UUO. Additional studies of the bisdemethoxycurcumin mechanism of action in the treatment of renal fibrosis demonstrated that the therapeutic effect of bisdemethoxycurcumin is mediated by the specific induction of fibroblast apoptosis at a concentration of 20 μM. bisdemethoxycurcumin can efficiently protect against renal fibrosis both in vitro and in vivo. This discovery will provide new ideas for renal fibrosis treatment in clinics and a new direction for the development of effective drug therapy of renal fibrosis.

    Topics: Animals; Apoptosis; Biological Products; Cell Line; Curcumin; Diarylheptanoids; Disease Models, Animal; Female; Fibroblasts; Fibrosis; Humans; Kidney; Male; Mice; Protective Agents; Renal Insufficiency, Chronic; Ureteral Obstruction; Urinary Tract

2019
Curcumin ameliorates glyoxylate-induced calcium oxalate deposition and renal injuries in mice.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2019, Volume: 61

    Nephrolithiasis is one of the most common and frequent urologic diseases worldwide. Several pathophysiological mechanisms are involved in stone formation, including oxidative stress, inflammation, apoptosis, fibrosis and autophagy. Curcumin, the predominant active component of turmeric, has been shown to have pleiotropic biological and pharmacological properties, such as antioxidant, anti-inflammatory and antifibrotic effects.. The current study proposed to systematically investigate the protective effects and the underlying mechanisms of curcumin in a calcium oxalate (CaOx) nephrolithiasis mouse model.. The animal model was established in male C57BL/6 mice by successive intraperitoneal injection of glyoxylate (100 mg/kg) for 1 week. Curcumin was orally given to mice 7 days before the injection of glyoxylate and for a total of 14 days at 50 mg/kg or 100 mg/kg. Bilateral renal tissue was harvested and processed for oxidative stress index detection, histopathological examinations and other analyses.. Coadministration of curcumin could significantly reduce glyoxylate-induced CaOx deposition and simultaneous tissue injury in mouse kidneys. Meanwhile, curcumin alleviated the oxidative stress response via reducing MDA content and increasing SOD, CAT, GPx, GR and GSH levels in this animal model. Moreover, treatment with curcumin significantly inhibited apoptosis and autophagy induced by hyperoxaluria. Curcumin also attenuated the high expression of IL-6, MCP-1, OPN, CD44, α-SMA, Collagen I and collagen fibril deposition, which were elevated by hyperoxaluria. Furthermore, the results revealed that both the total expression and nuclear accumulation of Nrf2, as well as its main downstream products such as HO-1, NQO1 and UGT, were decreased in the kidneys of mice in the crystal group, while treatment with curcumin could rescue this deterioration.. Curcumin could significantly alleviate CaOx crystal deposition in the mouse kidney and the concurrent renal tissue injury. The underlying mechanism involved the combination of antioxidant, anti-apoptotic, inhibiting autophagy, anti-inflammatory, and antifibrotic activity and the ability to decrease expression of OPN and CD44 through the Nrf2 signaling pathway. The pleiotropic antilithic properties, combined with the minimal side effects, make curcumin a good potential choice to prevent and treat new or recurrent nephrolithiasis.

    Topics: Animals; Apoptosis; Autophagy; Calcium Oxalate; Curcumin; Disease Models, Animal; Fibrosis; Glyoxylates; Hyaluronan Receptors; Kidney; Male; Mice, Inbred C57BL; Nephritis; Nephrolithiasis; Osteopontin; Oxidative Stress; Protective Agents; Signal Transduction

2019
Effect of Curcumin on the Formation of Epidural Fibrosis in an Experimental Laminectomy Model in Rats.
    Turkish neurosurgery, 2019, Volume: 29, Issue:3

    To clarify the effects of topical application of curcumin on the prevention of epidural fibrosis.. Twenty-one rats were randomly divided into three equal groups (control, spongostan, local curcumin) and a laminectomy procedure was performed between T11 and L1 in all rats. Subsequently, spongostan soaked with curcumin (100 mg/kg) was applied topically. After four weeks, the vertebral column from T9 to L3, which included the paraspinal muscles and epidural scar tissue, was removed as a single piece and the epidural fibrosis and arachnoidal scarring were graded and histopathological analysis carried out accordingly. Kruskal-Wallis and Pearson Chi-Square tests were used for statistical analysis. A p-value of less than 0.05 was considered to be significant.. The grading of epidural fibrosis was far lower in the experimental group with curcumin compared to the control and spongostan groups, but the difference was not statistically significant.. The findings of this study show that local curcumin decreases the formation of epidural fibrosis and this effect of curcumin is thought to be mediated by reducing the functions of inflammatory cells such as macrophages, neutrophils and fibroblasts, and the anti-inflammatory and antioxidant effects.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cicatrix; Curcumin; Epidural Space; Female; Fibrosis; Laminectomy; Models, Animal; Rats; Rats, Wistar; Treatment Outcome

2019
Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes.
    Acta pharmacologica Sinica, 2018, Volume: 39, Issue:2

    Topics: AMP-Activated Protein Kinases; Animals; Collagen Type I; Collagen Type III; Curcumin; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Disease Models, Animal; Fibroblasts; Fibrosis; Glucose; Humans; Male; Myocardium; p38 Mitogen-Activated Protein Kinases; Protein Serine-Threonine Kinases; Rats, Sprague-Dawley; Receptor, Transforming Growth Factor-beta Type II; Receptors, Transforming Growth Factor beta; Signal Transduction; Smad Proteins; Transforming Growth Factor beta1

2018
Immunomodulatory liposomes targeting liver macrophages arrest progression of nonalcoholic steatohepatitis.
    Metabolism: clinical and experimental, 2018, Volume: 78

    Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic macrophage inflammation, steatosis and fibrosis. Liposomes injected intravenously passively target hepatic myeloid cells and have potential to deliver immunomodulatory compounds and treat disease. We investigated targeting, delivery, immunomodulation and efficacy of liposomes in mice with diet-induced NASH.. Liposome-encapsulated lipophilic curcumin or 1,25-dihydroxy-vitamin D3 (calcitriol) were injected intravenously into mice with diet-induced NASH. Liver and cell liposome uptake was assessed by in vivo imaging and flow cytometry. Immunomodulation of targeted cells were assessed by RNA transcriptome sequencing. NASH was assessed by histological scoring, serum liver enzymes and fasting glucose/insulin and liver RNA transcriptome sequencing.. Liposomes targeted lipid containing MHC class-II. Liposomes are a new strategy to target lipid rich inflammatory dendritic cells and have potential to deliver immunomodulatory compounds to treat NASH.

    Topics: Animals; Curcumin; Diet, High-Fat; Disease Progression; Female; Fibrosis; Hepatocytes; Immunologic Factors; Inflammation; Insulin Resistance; Liposomes; Liver; Liver Cirrhosis; Macrophages; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Transcriptome; Vitamin D

2018
Development and Characterization of an In Vitro Model for Radiation-Induced Fibrosis.
    Radiation research, 2018, Volume: 189, Issue:3

    Radiation-induced fibrosis (RIF) is a major side effect of radiotherapy in cancer patients with no effective therapeutic options. RIF involves excess deposition and aberrant remodeling of the extracellular matrix (ECM) leading to stiffness in tissues and organ failure. Development of preclinical models of RIF is crucial to elucidate the molecular mechanisms regulating fibrosis and to develop therapeutic approaches. In addition to radiation, the main molecular perpetrators of fibrotic reactions are cytokines, including transforming growth factor-β (TGF-β). We hypothesized that human oral fibroblasts would develop an in vitro fibrotic reaction in response to radiation and TGF-β. We demonstrate here that fibroblasts exposed to radiation followed by TGF-β exhibit a fibrotic phenotype with increased collagen deposition, cell proliferation, migration and invasion. In this in vitro model of RIF (RIF

    Topics: Cell Movement; Cell Proliferation; Collagen; Curcumin; Extracellular Matrix; Fibroblasts; Fibrosis; Gene Expression Regulation; Hepatocyte Growth Factor; Humans; Integrins; Pentoxifylline; Radiation Injuries; Transforming Growth Factor beta

2018
Dietary tetrahydrocurcumin reduces renal fibrosis and cardiac hypertrophy in 5/6 nephrectomized rats.
    Pharmacology research & perspectives, 2018, Volume: 6, Issue:2

    Tetrahydrocurcumin (THC) is the principal metabolite of curcumin and has antioxidant properties. In the present investigation, the effect of THC on renal and cardiovascular outcomes was studied in rats with chronic kidney disease (CKD). CKD rats were randomized following 5/6 nephrectomy to a special diet for 9 weeks which contained 1% THC (CKD+THC group). Low-dose polyenylphosphatidylcholine was used as a lipid carrier to increase bioavailability. Endpoints included tail blood pressure, normalized heart weight, plasma and urine biochemical data, and kidney tissue analyses. CKD animals demonstrated increased proteinuria, decreased creatinine clearance, hypertension, and cardiac hypertrophy. The antioxidant proteins CuZn SOD and glutathione peroxidase were decreased in the remnant kidney, while apoptosis (caspase-3) and fibrosis (alpha-SM actin) were increased. Renal fibrosis was confirmed histologically on trichrome staining. These pathologic changes were ameliorated in the CKD+THC group with significant decrease in proteinuria, hypertension, and kidney fibrosis. THC therapy restored levels of CuZn SOD and glutathione peroxidase. Consistent with prior reports, dietary THC did not improve nuclear Nrf2 levels. In summary, dietary THC therapy improved expression of antioxidant proteins in the remnant kidney, decreased renal fibrosis and proteinuria, and ameliorated hypertension in 5/6 nephrectomized rats.

    Topics: Animals; Antioxidants; Cardiomegaly; Curcumin; Disease Models, Animal; Female; Fibrosis; Kidney; Kidney Function Tests; Nephrectomy; Rats, Sprague-Dawley; Renal Insufficiency, Chronic

2018
Curcumin alleviates ischemia reperfusion-induced late kidney fibrosis through the APPL1/Akt signaling pathway.
    Journal of cellular physiology, 2018, Volume: 233, Issue:11

    As a major cause of renal failure, transient renal ischemia and reperfusion induce both acute kidney injury and late fibrosis, which are the common pathological manifestations of end-stage renal disease. Curcumin is a biologically active polyphenolic compound found in turmeric. Increasing evidence has demonstrated that curcumin has a protective action against renal fibrosis, whereas mechanisms underlying the anti-fibrosis role of curcumin remain poorly defined. Here, we found that APPL1, an important intracellular binding partner for AdipoR, was involved in the pathogenesis of acute injury or fibrosis and was significantly upregulated by curcumin in a mouse model of ischemia reperfusion-induced late kidney fibrosis. Moreover, Akt signaling was the specific signaling pathway identified downstream of APPL1 in the pathogenesis of fibrosis. Our in vitro experiment demonstrated that curcumin alleviates ischemia reperfusion-induced late kidney fibrosis via the APPL1/Akt pathway. These data are helpful for understanding the anti-fibrosis mechanism of curcumin in the pathogenesis of AKI-induced late fibrosis.

    Topics: Acute Kidney Injury; Adaptor Proteins, Signal Transducing; Animals; Curcumin; Disease Models, Animal; Fibrosis; Humans; Kidney; Mice; Proto-Oncogene Proteins c-akt; Receptors, Adiponectin; Reperfusion Injury; Signal Transduction

2018
The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2018, Apr-01, Volume: 43

    Modified herbal medicines implicate the combination of several therapeutic practices of native systems of medicine that may extend many earlier generations, which frequently afford valuable therapeutic benefits.. In this study, the role of nano-curcumin and aged garlic extract (AGE) as two modified phytomedicines on alleviating both of advanced glycation end products (AGEPs) and oxidative stress (OS) in streptozotocin (STZ) induced diabetic rats were investigated during this study.. Nano-curcumin and AGE suspension were orally administrated at a dose of 300, 500 mg/kg body weight respectively. Serum glucose, insulin, total cholesterol, triglycerides and myocardial enzyme activities including creatine kinase-isoenzyme (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were determined biochemically, while quantitative real-time polymerase chain reaction (qRT-PCR)-test had been used to determine relative of manganese-superoxide dismutase (Mn-SOD) and receptor for advanced glycation end products (RAGE) gene expressions in the heart tissue of rats. Structure of rat's heart tissue was examined by histopathological analysis (H&E).. AGE increased the body weight and insulin concentration, while, it decreased serum glucose concentration, CK-MB, and LDH enzyme activities in comparing with the diabetic group. In addition, total cholesterol, triglycerides, and AST didn't show any significant changes in serum values of AGE compared to diabetic rats. Nano-curcumin suspension decreased the serum levels of triglycerides, CK- MB, LDH, and AST. While, there were non-significant changes in the body weight, glucose, insulin, and total cholesterol level of the same group compared with the STZ- untreated induced diabetic rats. The transcript quantity of manganese-superoxide dismutase gene (Mn-SOD) was highly accumulated (3.25 and 3.87-fold) in the heart tissue sample of the induced diabetic rats in response to both nano-Curcumin and AGE suspension respectively. While AGE was the most potent treatment where it caused down regulation of the receptor for advanced glycation end products gene (RAGE) expression (1.79-fold). Results of histopathological analyses under the light microscope showed restoring the structural integrity of the myocytes towards normalization in diabetic hearts treated with each of nano-curcumin and AGE suspension compared with the untreated diabetic heart samples.. Nano-curcumin and AGE suspension have a great therapeutic potential in the treatment of DCM, Diabetic cardiomyopathy, by attenuating cardiac inflammation, myocardial fibrosis, and programmed myocardial cell deaths through inhibiting OS and AGEPs accumulation in diabetic heart tissue. Furthermore, the hypoglycemic antioxidant properties of AGE resulted in more potent therapeutic effect than nano-curcumin in the treatment of diabetic hearts.

    Topics: Animals; Antioxidants; Apoptosis; Curcumin; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Fibrosis; Garlic; Hypoglycemic Agents; Insulin; Male; Myocardium; Nanoparticles; Oxidative Stress; Plant Extracts; Rats, Sprague-Dawley; Receptor for Advanced Glycation End Products; Superoxide Dismutase

2018
Curcumin down-regulates IL-17A mediated p53-fibrinolytic system in bleomycin induced acute lung injury in vivo.
    Journal of cellular biochemistry, 2018, Volume: 119, Issue:9

    Bleomycin (BLM) induced cellular damage causes inflammation in the alveolar compartment and impairment of fibrinolytic system leads to alveolar epithelial cell apoptosis. Here, we describe novel inflammatory pathway associated with p53-fibrinolytic system and apoptosis of alveolar epithelial cells and pharmacological efficiency of curcumin against this action. In the present study we used C57BL/6 mice. The specific dose and time interval of curcumin were analyzed to assess the intervention. Experiments were designed to investigate the IL-17A mediated modulation in the alveolar epithelial cell apoptosis and injury. Various techniques such as Western blot, RT-PCR, Immunohistochemistry were used for this study. We observed that the BLM-induced lung injury and its progression were successfully regulated by the effective dose and time intervention of curcumin. There was also decreased expression of chemokines, p53, and fibrinolytic components such as PAI-1 and increased uPA, uPAR expression, and decreased alveolar epithelial cell apoptosis, which indicates the IL-17A mediated novel inflammatory pathway. It is confirmed that the IL-17A involved in the modulation of p53-fibrinolytic system and epithelial cell apoptosis in BLM induced mice. The cross-talk between the inflammatory, fibrinolytic, and apoptotic pathways were resolved by curcumin intervention. This pathway and intervention could serve as a modern therapy to resolve the complications to cure the lung injury and its progression.

    Topics: Acute Lung Injury; Alveolar Epithelial Cells; Analysis of Variance; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antibiotics, Antineoplastic; Apoptosis; Bleomycin; Caspase 3; Curcumin; Disease Models, Animal; Down-Regulation; Fibrosis; Interleukin-17; Male; Mice; Mice, Inbred C57BL; Proto-Oncogene Proteins c-akt; Time Factors; Tumor Suppressor Protein p53

2018
Cardioprotective effects of the novel curcumin analogue C66 in diabetic mice is dependent on JNK2 inactivation.
    Journal of cellular and molecular medicine, 2018, Volume: 22, Issue:12

    Diabetic cardiomyopathy is an independent cardiac injury that can develop in diabetic individuals. Our previous study showed that C66, a curcumin analogue, protects against diabetes-induced cardiac damage. The present study sought to reveal the underlying mechanisms of C66-mediated cardioprotection.. Neither C66 treatment nor JNK2 knockout affected body weight or plasma glucose levels. Cardiac inflammation, fibrosis, oxidative stress, and apoptosis were increased in WT diabetic compared to WT control mice, all of which were attenuated by C66 treatment. However, these pathological and molecular changes induced by diabetes were eliminated in JNK2. Our results indicate that C66 ameliorates diabetic cardiomyopathy by inhibiting JNK2 relative pathways.

    Topics: Animals; Apoptosis; Curcumin; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Diabetic Nephropathies; Fibrosis; Humans; Inflammation; Mice; Mice, Inbred NOD; Mitogen-Activated Protein Kinase 9; Oxidative Stress; Phosphorylation

2018
Androgen receptor regulates cardiac fibrosis in mice with experimental autoimmune myocarditis by increasing microRNA-125b expression.
    Biochemical and biophysical research communications, 2018, 11-17, Volume: 506, Issue:1

    Cardiac fibrosis is an important cardiac remodeling event in the development of inflammation dilated cardiomyopathy (iDCM). We have previously observed that degradation enhancer of androgen receptor (ASC-J9

    Topics: Animals; Autoimmune Diseases; Cardiotonic Agents; Collagen; Curcumin; Fibroblasts; Fibrosis; Gene Expression Regulation; Humans; Mice; Mice, Inbred BALB C; MicroRNAs; Myocarditis; Myocardium; Myosin Heavy Chains; Primary Cell Culture; Receptors, Androgen; Signal Transduction

2018
Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR.
    European review for medical and pharmacological sciences, 2018, Volume: 22, Issue:21

    Curcumin has been reported to possess cardioprotective effects. However, the potential molecular mechanism of curcumin is still not clear. The aim of the present study was to investigate the role of curcumin in regulating autophagy and mammalian target of rapamycin (mTOR) signaling in isoproterenol-induced cardiac hypertrophy and fibrosis in the rat.. Rats model of cardiac hypertrophy and fibrosis was induced by isoprenaline (5 mg/kg/day, subcutaneous injection), which were treated with or without curcumin (200 mg/kg/day, intragastric administration). Masson's trichrome staining was performed to investigate the effect of curcumin on fibrosis of cardiac hypertrophy rat. The expression of hypertrophic and fibrosis markers was determined by RT-qPCR. The protein expression of autophagic markers, mTOR, and phosphorylated-mTOR (p-mTOR) was performed by Western blotting.. Isoprenaline treatment significantly up-regulated the mRNA expression of hypertrophic (ANP and MYH7) and fibrotic (procollagen I and III) markers in the hearts from rats. All of these markers were reversed by curcumin treatment in isoproterenol-treated rats. Histological analysis showed that curcumin attenuated the interstitial fibrosis of heart triggered by isoproterenol. Moreover, isoproterenol significantly reduced the mRNA levels of mTOR and the protein expression of p-mTOR. However, isoprenaline caused a significant induction of the mRNA levels of LC3 and Beclin-1 and the protein expression of LC3-II and Beclin-1, as well as LC3-II/I ratio. Curcumin abolished these isoprenaline-mediated changes in mTOR/autophagy signaling pathway.. Our data demonstrated that curcumin targeted mTOR/autophagy axis could attenuate cardiac hypertrophy and fibrosis in a rat model.

    Topics: Animals; Autophagy; Beclin-1; Cardiomegaly; Curcumin; Fibrosis; Isoproterenol; Male; Myocardium; Rats; Rats, Sprague-Dawley; Signal Transduction; TOR Serine-Threonine Kinases

2018
Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice.
    Toxicology letters, 2017, Aug-15, Volume: 278

    Hyperglycemia-induced inflammation and fibrosis have important roles in the pathogenesis of diabetic nephropathy and cardiomyopathy. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be an effective approach to new avenue for treating diabetic complications. J17, a molecule with structural similarities to curcumin, exhibited good anti-inflammatory activities by inhibiting LPS-induced inflammatory response in macrophages. However, its ability to alleviate hyperglycemia-induced injury via its anti-inflammatory actions remained unclear. Thus, we reported that J17 exerts significant inhibitory effects on hyperglycemia-induced inflammation and fibrosis in NRK-52E cells, H9C2 cells and a streptozotocin-induced diabetic mouse model. We also found that the anti-inflammatory and anti-fibrosis activities of J17 are associated with the inhibition of the P38 and AKT signal pathway, respectively. In vivo oral administration of J17 suppressed hyperglycemia-induced inflammation, hypertrophy and fibrosis, thereby reducing key markers for renal and cardiac dysfunction and improving in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. The results of this study indicated that J17 can be potentially used as a cardio- and reno-protective agent and that targeting the P38 and AKT pathways may be an effective therapeutic strategy for diabetic complications.

    Topics: Animals; Anti-Inflammatory Agents; Blood Glucose; Cell Line; Curcumin; Cytokines; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Diabetic Nephropathies; Fibrosis; Inflammation Mediators; Kidney; Male; Mice, Inbred C57BL; Myocytes, Cardiac; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Streptozocin; Time Factors

2017
Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor β1 and matrix metalloproteinase 9 / tissue inhibitor of metalloproteinase 1.
    Chinese journal of integrative medicine, 2017, Volume: 23, Issue:5

    To study the effect of curcumin on fibroblasts in rats with cardiac fibrosis.. Curcumin significantly decreased interstitial and perivascular myocardial collagen deposition and cardiac weight index with reducing protein expression of collagen type I/III in hearts (P<0.05). In addition, curcumin directly inhibited angiotensin (Ang) II-induced fibroblast proliferation and collagen type I/III expression in cardiac fibroblasts (P<0.05). Curcumin also inhibited fibrosis by inhibiting myofibroblast differentiation, decreased TGF-β1, MMP-9 and TIMP-1 expression (P<0.05) but had no effects on Smad3 in Ang II incubated cardiac fibroblasts.. Curcumin reduces cardiac fibrosis in rats and Ang II-induced fibroblast proliferation by inhibiting myofibroblast differentiation, decreasing collagen synthesis and accelerating collagen degradation through reduction of TGF-β1, MMPs/TIMPs. The present findings also provided novel insights into the role of curcumin as an antifibrotic agent for the treatment of cardiac fibrosis.

    Topics: Angiotensin II; Animals; Cell Differentiation; Cell Proliferation; Collagen Type I; Collagen Type III; Curcumin; Electrocardiography; Fibrosis; Isoproterenol; Male; Matrix Metalloproteinase 9; Myocardium; Myofibroblasts; Rats, Sprague-Dawley; Smad3 Protein; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta1

2017
Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo.
    Brain research, 2017, 01-15, Volume: 1655

    Spinal cord injury (SCI) leads to glial scar formation by astrocytes, which severely hinders neural regeneration. Curcumin (cur) can inhibit glial scar formation, but the underlying mechanism is not fully understood. Using both in vivo and in vitro experiments, the current study investigated the phenotypic transformation of astrocytes following cur and siRNA intervention during the processes of inflammation and fibrosis and determined details of the relationship between cur treatment and the glial scar components GFAP and CSPG. We found that cur and NF-κb p65 siRNA could inhibit astrocyte activation through suppressing NF-κb signaling pathway, which led to down-regulate the expression of chemokines MCP-1, RANTES and CXCL10 released by astrocytes and decreased macrophage and T-cell infiltration, thus reducing the inflammation in the glial scar. In addition, silencing SOX-9 may reduce the deposition of extracellular matrix CSPG; whereas its over-expression could increase the CSPG expression. Cur suppressedSOX-9-inducedCSPG deposition, reduced α-SMA (an important symbol of fibrosis) expression in astrocytes, altered astrocyte phenotype, and inhibited glial scar formation by regulating fibrosis. This study confirmed that cur could regulate both the NF-κb and SOX9 signaling pathways and reduce the expression of intracellular and extracellular glial scar components through dual-target regulating both inflammation and fibrosis after SCI in the rat. This study provides an important hypothesis centered on the dual inhibition of intracellular and extracellular glial scar components as a treatment strategy for SCI.

    Topics: Actins; Animals; Anti-Inflammatory Agents, Non-Steroidal; Astrocytes; Cicatrix; Curcumin; Disease Models, Animal; Extracellular Matrix; Female; Fibrosis; Inflammation; Macrophages; Random Allocation; Rats, Sprague-Dawley; RNA, Small Interfering; SOX9 Transcription Factor; Spinal Cord Injuries; T-Lymphocytes; Transcription Factor RelA

2017
A Novel Mouse Model to Study Image-Guided, Radiation-Induced Intestinal Injury and Preclinical Screening of Radioprotectors.
    Cancer research, 2017, 02-15, Volume: 77, Issue:4

    Radiation is an important treatment modality for gastrointestinal tumors, but intestinal injury is a common side effect. Here we describe a physiologically relevant model for studying the molecular determinants of radiation-induced intestinal damage and testing novel radioprotectors. The model employs a radiopaque marker implanted into the surface of the mouse jejunum, serving as a fiducial marker for precise radiation targeting. Mice were imaged with Cone-Beam CT (CBCT) and irradiated (IR) to the marked area using the Small Animal Radiation Research Platform (SARRP). IR-induced damage was acute but reversible and largely restricted to the area of the marker, leaving the surrounding tissues intact. Although whole gut irradiation with these doses caused lethal GI syndrome, focal (5 mm) radiation of the intestine did not cause any weight loss or lethality. However, fibrosis and collagen deposition 4 months post-IR indicated chronic intestinal damage. A separate cohort of mice was treated daily with curcumin, a clinically tested radioprotector, prior to and post-IR. Curcumin-treated mice showed significant decreases in both local and systemic inflammatory cytokine levels and in fibrosis, suggesting it is an effective radioprotector of the intestine. Our results indicate that this model, which emulates clinically relevant intestinal radiation-induced injury, can be used to assess radioprotectors prior to testing in the clinic.

    Topics: Animals; Apoptosis; Cone-Beam Computed Tomography; Curcumin; Disease Models, Animal; Female; Fibrosis; Gastrointestinal Neoplasms; Histones; Interleukin-6; Intestines; Mice; Mice, Inbred C57BL; Radiation Injuries, Experimental; Radiation-Protective Agents; Radiotherapy, Image-Guided

2017
Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation.
    International immunopharmacology, 2017, Volume: 44

    Curcumin, a phenolic compound, has a wide spectrum of therapeutic effects such as antitumor, anti-inflammatory, anti-cancer and so on. The study aimed to investigate the underlying mechanisms of curcumin to protect liver damage and progression of non-alcoholic steatohepatitis (NASH) in a novel NASH-hepatocellular carcinoma (HCC) mouse model. To induce this model neonatal C57BL/6J male mice were exposed to low-dose streptozotocin and were fed a high-fat diet (HFD) from the age of 4weeks to 14weeks. Curcumin was given at 100mg/kg dose daily by oral gavage started at the age of 10weeks and continued until 14weeks along with HFD feeding. We found that curcumin improved the histopathological changes of the NASH liver via reducing the level of steatosis, fibrosis associated with decreasing serum aminotransferases. In addition, curcumin treatment markedly reduced the hepatic protein expression of oxidative stress, pro-inflammatory cytokines, and chemokines including interferon (IFN) γ, interleukin-1β and IFNγ-inducible protein 10, in NASH mice. Furthermore, curcumin treatment significantly reduced the cytoplasmic translocation of high mobility group box 1 (HMGB1) and the protein expression of toll like receptor 4. Nuclear translocation of nuclear factor kappa B (NF-κB) was also dramatically attenuated by the curcumin in NASH liver. Curcumin treatment effectively reduced the progression of NASH to HCC by suppressing the protein expression of glypican-3, vascular endothelial growth factor, and prothrombin in the NASH liver. Our data suggest that curcumin reduces the progression of NASH and liver damage, which may act via inhibiting HMGB1-NF-κB translocation.

    Topics: Active Transport, Cell Nucleus; Animals; Animals, Newborn; Carcinoma, Hepatocellular; Curcumin; Disease Models, Animal; Fibrosis; HMGB1 Protein; Humans; Liver; Liver Neoplasms; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Streptozocin

2017
Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress.
    Food & function, 2016, Volume: 7, Issue:1

    Curcumin is a polyphenol and cisplatin is an antineoplastic agent that induces nephrotoxicity associated with oxidative stress, apoptosis, fibrosis and decrease in renal tight junction (TJ) proteins. The potential effect of curcumin against alterations in TJ structure and function has not been evaluated in cisplatin-induced nephrotoxicity. The present study explored whether curcumin is able to prevent the cisplatin-induced fibrosis and decreased expression of the TJ and adherens junction (AJ) proteins occludin, claudin-2 and E-cadherin in cisplatin-induced nephrotoxicity. Curcumin (200 mg kg(-1)) was administered in three doses, and rats were sacrificed 72 h after cisplatin administration. Curcumin was able to scavenge, in a concentration-dependent way, superoxide anion, hydroxyl radical, peroxyl radical, singlet oxygen, peroxynitrite anion, hypochlorous acid and hydrogen peroxide. Cisplatin-induced renal damage was associated with alterations in plasma creatinine, expression of neutrophil gelatinase-associated lipocalin and of kidney injury molecule-1, histological damage, increase in apoptosis, fibrosis (evaluated by transforming growth factor β1, collagen I and IV and α-smooth muscle actin expressions), increase in oxidative/nitrosative stress (evaluated by Hsp70/72 expression, protein tyrosine nitration, superoxide anion production in isolated glomeruli and proximal tubules, and protein levels of NADPH oxidase subunits p47(phox) and gp91(phox), protein kinase C β2, and Nrf2) as well as by decreased expression of occludin, claudin-2, β-catenin and E-cadherin. Curcumin treatment prevented all the above-described alterations. The protective effect of curcumin against cisplatin-induced fibrosis and decreased proteins of the TJ and AJ was associated with the prevention of glomerular and proximal tubular superoxide anion production induced by NADPH oxidase activity.

    Topics: Adherens Junctions; Animals; Antioxidants; Biomarkers; Cisplatin; Curcumin; Fibrosis; Free Radical Scavengers; Kidney Diseases; Male; NADPH Oxidases; Oxidative Stress; Protein Kinase C beta; Protein Subunits; Rats; Rats, Wistar; Reactive Oxygen Species; Superoxides; Tight Junctions

2016
Nanoencapsulated curcumin and praziquantel treatment reduces periductal fibrosis and attenuates bile canalicular abnormalities in Opisthorchis viverrini-infected hamsters.
    Nanomedicine : nanotechnology, biology, and medicine, 2016, Volume: 12, Issue:1

    This study investigated the effects of nanoencapsulated curcumin (NEC) and praziquantel (PZQ) treatment on the resolution of periductal fibrosis (PDF) and bile canalicular (BC) abnormalities in Opisthorchis viverrini infected hamsters. Chronic O. viverrini infection (OV) was initially treated with either PZQ (OP) and subsequently treated with NEC (OP+NEC), curcumin (OP+Cur) or unloaded carriers (OP+carrier) daily for one month. OP+NEC treatment reduced the PDF by suppression of fibrotic markers (hydroxyproline content, α-SMA, CTGF, fibronectin, collagen I and III), cytokines (TGF-β and TNF-α) and TIMP-1, 2, 3 expression and upregulation of MMP-7, 13 genes. Higher activity of NEC in reducing fibrosis compared to curcumin was also demonstrated in in vitro studies. Moreover, OP+NEC also prevented BC abnormalities and upregulated several genes involved in bile acid metabolism. These results demonstrate that NEC and PZQ treatment reduces PDF and attenuates BC defect in experimental opisthorchiasis. From the Clinical Editor: Infection by Opisthorchis viverrini leads to liver fibrosis and affects population in SE Asia. Currently, praziquantel (PZQ) is the drug of choice but this drug has significant side effects. In this study, the authors combined curcumin (NEC) and praziquantel in a nanocarrier to test the anti-oxidative effect of curcumin in an animal model. The encouraging results may pave a way for better treatment in the future.

    Topics: Animals; Anthelmintics; Anti-Inflammatory Agents, Non-Steroidal; Bile Canaliculi; Cricetinae; Curcumin; Diffusion; Drug Combinations; Fibrosis; Nanocapsules; Opisthorchiasis; Praziquantel; Treatment Outcome

2016
Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro.
    Drug design, development and therapy, 2016, Volume: 10

    Curcumin, a polyphenolic compound derived from turmeric, protects against myocardial injury by alleviating oxidative stress, inflammation, apoptosis, and fibrosis. However, the role of curcumin and its mechanism of action on interstitial fibrosis after myocardial infarction (MI) are poorly understood. To clarify, MI was induced by a permanent ligation of the left anterior descending coronary artery in adult mice, and the effects of curcumin were evaluated 4 weeks after the MI event. In vitro, we treated cardiac fibroblasts (CFs) with Ang II, and investigated the anti-fibrotic mechanism of curcumin. Our results showed that curcumin significantly attenuated collagen deposition in vivo and inhibited CF proliferation and migration, and MMP expression. In addition, we found that the down-regulation of SIRT1 after MI was attenuated by curcumin pretreatment, which indicated that the activation of SIRT1 might be involved in the protective action of curcumin. This hypothesis was confirmed by genetic inhibition of SIRT1 (siRNA-SIRT1) in Ang II-treated CFs. Our results provide new insights into the mechanism underlying the anti-fibrotic effects of curcumin in the heart.

    Topics: Angiotensin II; Animals; Cells, Cultured; Curcumin; Enzyme Activation; Fibroblasts; Fibrosis; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Rats; Rats, Wistar; Sirtuin 1; Structure-Activity Relationship

2016
Curcumin attenuates cyclosporine A‑induced renal fibrosis by inhibiting hypermethylation of the klotho promoter.
    Molecular medicine reports, 2016, Volume: 14, Issue:4

    Chronic kidney disease is increasingly considered to be a worldwide public health problem and usually leads to renal fibrosis. In the present study, curcumin, a polyphenol pigment extracted from turmeric, was demonstrated to exert protective effects on renal fibrosis via the suppression of transforming growth factor‑β (TGF‑β) downstream signaling, such as plasminogen activator inhibitor‑1 (PAI‑1), α‑smooth muscle actin (α‑SMA) and collagen I (Col I) downregulation. The present findings demonstrate that curcumin exerted a protective effect on cyclosporine A‑induced renal fibrosis via a klotho (KL)‑dependent mechanism, which inhibits the TGF‑β signaling pathway. Further research indicated that curcumin induced KL expression in HK‑2 tubular epithelial cells by inhibiting CpG hypermethylation in the KL promoter, which mediates the loss of expression in cells. Methylation‑specific polymerase chain reaction (PCR) combined with bisulfite sequencing identified numerous key CpG sites, such as 249, 240 and 236, whose methylation statuses are important for KL expression. A PCR reporter assay was utilized to further confirm these findings. In addition, the effects of curcumin on the regulation of DNA methyltransferase 1 (Dnmt1) expression were evaluated, and the data suggest that curcumin inhibits Dnmt1 expression and restricts CpG hypermethylation. Thus, the current study reveals that curcumin attenuated renal fibrosis by suppressing CpG methylation in the KL promoter, thus inducing KL expression, which inhibited TGF‑β signaling, which may provide a novel therapeutic approach for the treatment of renal fibrosis.

    Topics: Animals; Antifungal Agents; Cell Line; Curcumin; Cyclosporine; DNA Methylation; Female; Fibrosis; Glucuronidase; Humans; Kidney; Klotho Proteins; Mice, Inbred C57BL; Promoter Regions, Genetic; Protective Agents; Renal Insufficiency, Chronic

2016
Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model.
    Inflammopharmacology, 2016, Volume: 24, Issue:6

    Paraquat (PQ), a potent herbicide can cause severe toxicity. We report here that fibroproliferation phase of acute lung injury (ALI) is initiated much earlier (within 48 h) after PQ intoxication than previously reported (after 2 weeks) and we aimed to study the protective effects of intranasal curcumin as new therapeutic strategy in mouse model.. Mice (Park's strain) were divided into five experimental groups (I) control, received only saline (0.9 % NaCl) (II) PQ, mice intoxicated with PQ (50 mg/kg, i.p., single dose); (III) curcumin, treated with curcumin (5 mg/kg, i.n) an hour before PQ administration; (IV)Veh, DMSO (equal volume to curcumin) given an hour before PQ exposure; (V) DEXA, mice treated with dexamethasone (1 mg/kg, i.p) before an hour of PQ intoxication. After 48 h of the PQ exposure, all mice were sacrificed and samples were analyzed.. Pretreatment with intranasal curcumin (5 mg/kg) could modify the PQ-intoxication (50 mg/kg, i.p) induced structural remodeling of lung parenchyma at an early phase of acute lung injury. Significant increase in inflammatory cell count, reactive oxygen species and hydroxyproline levels were decreased after curcumin pretreatment (all p < 0.05). Histological examination and zymography results were also found consistent.. Our results show that curcumin pretreatment decreased the expression of alpha smooth muscle actin (α-SMA), matrix metalloproteinases-9 (MMP-9) and changed the expression of tissue inhibitors of metalloproteinase (TIMP-1) after PQ intoxication. Single toxic dose of PQ has initiated fibroproliferation within 48 h and intranasal curcumin may prove as new therapeutic strategy for PQ induced ALI and fibroproliferation.

    Topics: Acute Lung Injury; Administration, Intranasal; Animals; Anti-Inflammatory Agents; Collagen; Curcumin; Disease Models, Animal; Fibrosis; Lung; Male; Mice, Inbred Strains; Oxidative Stress; Paraquat; Pneumonia

2016
Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo.
    Journal of molecular and cellular cardiology, 2015, Volume: 79

    Obesity and increased free fatty acid (FFA) level are tightly linked, leading to the development of cardiovascular disorders. Curcumin is a natural product from Curcuma longa with multiple bioactivities and is known to have cardioprotective effects in several cellular and animal models. The current study was designed to evaluate the cardioprotective effects of curcumin and demonstrate the underlying mechanism in FFA-induced cardiac injury. Using cell culture studies and high fat in vivo model, we explored the mechanistic basis of anti-inflammatory and antioxidant activities of curcumin. We observed that palmitate (PA) treatment in cardiac derived H9C2 cells induced a marked increase in reactive oxygen species, inflammation, apoptosis and hypertrophy. All of these changes were effectively suppressed by curcumin treatment. In addition, oral administration of curcumin at 50mg/kg completely suppressed high fat diet-induced oxidative stress, inflammation, apoptosis, fibrosis, hypertrophy and tissue remodeling in mice. The beneficial actions of curcumin are closely associated with its ability to increase Nrf2 expression and inhibit NF-κB activation. Thus, both in vitro and in vivo studies showed a promising role of curcumin as a cardioprotective agent against palmitate and high fat diet mediated cardiac dysfunction. We indicated the regulatory roles of Nrf2 and NF-κB in obesity-induced heart injury, and suggested that they may be important therapeutic targets in the treatment of obesity-related disorders.

    Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Body Weight; Cardiomegaly; Cardiotonic Agents; Cell Line; Curcumin; Diet, High-Fat; Fatty Acids, Nonesterified; Fibrosis; Male; Mice, Inbred C57BL; Myocardium; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Palmitates; Rats; Reactive Oxygen Species

2015
Curcumin treatment suppresses CCR7 expression and the differentiation and migration of human circulating fibrocytes.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2015, Volume: 35, Issue:2

    Recent studies have demonstrated that circulating fibrocytes contribute to the formation and development of fibrosis. Curcumin, a polyphenolic compound isolated from turmeric, has been shown to have anti-fibrotic effects in various organs. We and others have demonstrated that curcumin beneficially affects the development of fibrosis. However the effect of curcumin on circulating fibrocytes has not been reported.. Human circulating fibrocytes were isolated from leukocyte concentrates of healthy human donors and identified based on the expression of CD34, CD45, collagen I (COLI), and chemokine receptor CCR7 (CCR7) via flow cytometry. Cell Counting Kit-8 was used to evaluate cell viability. The effect of curcumin on the differentiation and migration of human circulating fibrocytes was evaluated by immunofluorescence staining, flow cytometry and a transwell migration assay. Transforming growth factor (TGF)-β1 secretion was examined by ELISA.. Curcumin treatment (72 h; 20 μM) significantly decreased the expression of COL I, α-SMA and CCR7, as well as TGF-βl secretion, in human circulating fibrocytes. The inhibitory effect of curcumin on the differentiation and migration of human circulating fibrocytes is likely via regulating the CCR7/CCL21 signaling pathway, in particular by reducing CCR7 expression. These observed effects may be beneficial in resolving fibrosis by suppressing TGF-β1 secretion.. Our results suggest that curcumin has the potential to suppress the differentiation and migration of circulating fibrocytes, which would provide new explanation for curcumin's application in the development of fibrosis in various organs.

    Topics: Cell Differentiation; Cell Movement; Cell Survival; Collagen Type I; Curcumin; Down-Regulation; Fibrosis; Flow Cytometry; Humans; Leukocytes; Receptors, CCR7; Transforming Growth Factor beta1

2015
A newly designed curcumin analog Y20 mitigates cardiac injury via anti-inflammatory and anti-oxidant actions in obese rats.
    PloS one, 2015, Volume: 10, Issue:3

    Obesity is strongly associated with the cause of structural and functional changes of the heart in both human and animal models. Oxidative stress and inflammation play a critical role in the development of obesity-induced cardiac disorders. Curcumin is a natural product from Curcuma Longa with multiple bioactivities. In our previous study, in order to reach better anti-inflammatory and anti-oxidant dual activities, we designed a new mono-carbonyl curcumin analog, Y20, via the structural modification with both trifluoromethyl and bromine. This study was designed to investigate the protective effects of Y20 on obesity-induced cardiac injury and its underlying mechanisms. In high fat diet-fed rats, oral administration of Y20 at 20 mg/kg or curcumin at 50 mg/kg significantly decreased the cardiac inflammation and oxidative stress and eventually improved the cardiac remodeling by mitigating cardiac disorganization, hypertrophy, fibrosis and apoptosis. Y20 at 20 mg/kg showed comparable and even stronger bioactivities than curcumin at 50 mg/kg. The beneficial actions of Y20 are closely associated with its ability to increase Nrf2 expression and inhibit NF-κB activation. Taken together, these results suggest that Y20 may have a great therapeutic potential in the treatment of obesity-induced cardiac injury using Nrf2 and NF-κB as the therapeutic targets for treating obesity-related disorders.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Apoptosis; Cardiomegaly; Curcumin; Diet, High-Fat; Dietary Fats; Fibrosis; Gene Expression Regulation; Heart; Male; NF-E2-Related Factor 2; NF-kappa B; Obesity; Oxidative Stress; Rats; Rats, Wistar; Ventricular Remodeling

2015
Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats.
    Drug design, development and therapy, 2015, Volume: 9

    Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy.

    Topics: Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Curcumin; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Male; Myocardium; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2

2015
Cyclodextrin curcumin formulation improves outcome in a preclinical pig model of marginal kidney transplantation.
    American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2014, Volume: 14, Issue:5

    Decreasing organ quality is prompting research toward new methods to alleviate ischemia reperfusion injury (IRI). Oxidative stress and nuclear factor kappa beta (NF-κB) activation are well-described elements of IRI. We added cyclodextrin-complexed curcumin (CDC), a potent antioxidant and NF-κB inhibitor, to University of Wisconsin (UW) solution (Belzer's Solution, Viaspan), one of the most effective clinically approved preservative solutions. The effects of CDC were evaluated on pig endothelial cells and in an autologous donation after circulatory death (DCD) kidney transplantation model in large white pigs. CDC allowed rapid and lasting uptake of curcumin into cells. In vitro, CDC decreased mitochondrial loss of function, improved viability and lowered endothelial activation. In vivo, CDC improved function recovery, lowered histological injury and doubled animal survival (83.3% vs. 41.7%). At 3 months, immunohistochemical staining for epithelial-to-mesenchymal transition (EMT) and fibrosis markers was intense in UW grafts while it remained limited in the UW + CDC group. Transcriptional analysis showed that CDC treatment protected against up-regulation of several pathophysiological pathways leading to inflammation, EMT and fibrosis. Thus, use of CDC in a preclinical transplantation model with stringent IRI rescued kidney grafts from an unfavorable prognosis. As curcumin has proved well tolerated and nontoxic, this strategy shows promise for translation to the clinic.

    Topics: Adenosine; Allopurinol; Animals; Anti-Inflammatory Agents, Non-Steroidal; Blotting, Western; Cells, Cultured; Chemistry, Pharmaceutical; Curcumin; Cyclodextrins; Disease Models, Animal; Fibrosis; Flow Cytometry; Glutathione; Graft Rejection; Humans; Inflammation; Insulin; Kidney Transplantation; Kidney Tubules; Male; Organ Preservation Solutions; Oxidative Stress; Prostate; Raffinose; Real-Time Polymerase Chain Reaction; Reperfusion Injury; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Swine

2014
Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression.
    American journal of physiology. Endocrinology and metabolism, 2014, Jun-01, Volume: 306, Issue:11

    The development of diabetic cardiomyopathy is attributed to diabetic oxidative stress, which may be related to the mitogen-activated protein kinase (MAPK) c-Jun NH2-terminal kinase (JNK) activation. The present study tested a hypothesis whether the curcumin analog C66 [(2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene) cyclohexanone] as a potent antioxidant can protect diabetes-induced cardiac functional and pathogenic changes via inhibition of JNK function. Diabetes was induced with a single intraperitoneal injection of streptozotocin in male C57BL/6 mice. Diabetic and age-matched control mice were randomly divided into three groups, each group treated with C66, JNK inhibitor (JNKi, SP600125), or vehicle (1% CMC-Na solution) by gavage at 5 mg/kg every other day for 3 mo. Neither C66 nor JNKi impacted diabetic hyperglycemia and inhibition of body-weight gain, but both significantly prevented diabetes-induced JNK phosphorylation in the heart. Compared with basal line, cardiac function was significantly decreased in diabetic mice at 3 mo of diabetes but not in C66- or JNKi-treated diabetic mice. Cardiac fibrosis, oxidative damage, endoplasmic reticulum stress, and cell apoptosis, examined by Sirius red staining, Western blot, and thiobarbituric acid assay, were also significantly increased in diabetic mice, all which were prevented by C66 or JNKi treatment under diabetic conditions. Cardiac metallothionein expression was significantly decreased in diabetic mice but was almost normal in C66- or JNKi-treated diabetic mice. These results suggest that, like JNKi, C66 is able to prevent diabetic upregulation of JNK function, resulting in a prevention of diabetes-induced cardiac fibrosis, oxidative stress, endoplasmic reticulum stress, and cell death, along with a preservation of cardiac metallothionein expression.

    Topics: Animals; Apoptosis; Benzylidene Compounds; Blood Pressure; Blotting, Western; Coloring Agents; Curcumin; Cyclohexanones; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Echocardiography; Endoplasmic Reticulum Stress; Fibrosis; Heart; JNK Mitogen-Activated Protein Kinases; Lipid Peroxidation; Male; Metallothionein; Mice; Mice, Inbred C57BL; Myocardium; Oxidative Stress; Phosphorylation; Protein Kinase Inhibitors; Real-Time Polymerase Chain Reaction

2014
Curcumin attenuates cardiac fibrosis in spontaneously hypertensive rats through PPAR-γ activation.
    Acta pharmacologica Sinica, 2014, Volume: 35, Issue:10

    To investigate the effects of curcumin (Cur) on cardiac fibrosis in spontaneously hypertensive rats (SHRs) and the mechanisms underlying the anti-fibrotic effect of Cur in rat cardiac fibroblasts (CFs) in vitro.. SHRs were orally treated with Cur (100 mg·kg(-1)·d(-1)) or Cur (100 mg·kg(-1)·d(-1)) plus the PPAR-γ antagonist GW9662 (1 mg·kg(-1)·d(-1)) for 12 weeks. Cultured CFs were treated with angiotensin II (Ang II, 0.1 μmol/L) in vitro. The expression of relevant proteins and mRNAs was analyzed using Western blotting and real-time PCR, respectively. The expression and activity of peroxisome proliferator-activated receptor-γ (PPAR-γ) were detected using Western blotting and a DNA-binding assay, respectively.. Treatment of SHRs with Cur significantly decreased systolic blood pressure, blood Ang II concentration, heart weight/body weight ratio and left ventricle weight/body weight ratio, with concurrently decreased expression of connective tissue growth factor (CTGF), plasminogen activator inhibitor (PAI)-1, collagen III (Col III) and fibronectin (FN), and increased expression and activity of PPAR-γ in the left ventricle. Co-treatment with GW9662 partially abrogated the anti-fibrotic effects of Cur in SHRs. Pretreatment of CFs with Cur (5, 10, 20 μmol/L) dose-dependently inhibited Ang II-induced expression of CTGF, PAI-1, Col III and FN, and increased the expression and binding activity of PPAR-γ. Pretreatment with GW9662 partially reversed anti-fibrotic effects of Cur in vitro. Furthermore, pretreatment of CFs with Cur inhibited Ang II-induced expression of transforming growth factor-β1 (TGF-β1) and phosphorylation of Smad2/3, which were reversed by GW9662.. Cur attenuates cardiac fibrosis in SHRs and inhibits Ang II-induced production of CTGF, PAI-1 and ECM in CFs in vitro. The crosstalk between PPAR-γ and TGF-β1/Smad2/3 signaling is involved in the anti-fibrotic and anti-proliferative effects of Cur.

    Topics: Angiotensin II; Anilides; Animals; Blood Pressure; Body Weight; Cell Proliferation; Cells, Cultured; Collagen Type III; Connective Tissue Growth Factor; Curcumin; Fibroblasts; Fibronectins; Fibrosis; Heart Ventricles; Male; Plasminogen Activator Inhibitor 1; PPAR gamma; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Smad2 Protein; Smad3 Protein; Transforming Growth Factor beta1

2014
Curcumin ameliorates renal fibrosis by inhibiting local fibroblast proliferation and extracellular matrix deposition.
    Journal of pharmacological sciences, 2014, Volume: 126, Issue:4

    Renal fibrosis is mainly characterized by activation and proliferation of interstitial fibroblasts and by excessive synthesis and accumulation of extracellular matrix (ECM) components, including fibronectin (FN) and collagen. This study investigated the effects of curcumin on proliferation of renal interstitial fibroblasts and their underlying mechanisms in vivo and in vitro. ECM components were visualized by Sirius red and immunohistochemistry staining and quantified by western blot analysis in mice with unilateral ureteral obstruction (UUO). Duplex staining for proliferating cell nuclear antigen and α-smooth muscle actin (α-SMA), as well as MTT and flow cytometry assays, were performed to measure fibroblast proliferation. Protein expression of phosphorylated Smad2/3 (p-Smad2/3) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were assessed by western blotting. Curcumin treatment decreased the accumulation of type I collagen and FN in the kidney of animals with UUO. Activation of rat renal interstitial fibroblasts (NRK-49F) was induced by TGF-β1. Curcumin treatment inhibited fibroblast proliferation and the cell cycle was arrested in the G1 phase. Curcumin treatment upregulated the expression of PPAR-γ and downregulated the expression of p-Smad2/3. These results suggest that curcumin treatment ameliorates renal fibrosis by reducing fibroblast proliferation and ECM accumulation mediated by PPAR-γ and Smad-dependent TGF-β1 signaling.

    Topics: Animals; Cell Proliferation; Cells, Cultured; Collagen; Curcumin; Depression, Chemical; Extracellular Matrix; Fibroblasts; Fibronectins; Fibrosis; Gene Expression; Immunohistochemistry; Kidney; Male; Mice, Inbred C57BL; PPAR gamma; Rats; Signal Transduction; Smad2 Protein; Smad3 Protein; Transforming Growth Factor beta1

2014
Serum metabonomic analysis of protective effects of Curcuma aromatica oil on renal fibrosis rats.
    PloS one, 2014, Volume: 9, Issue:9

    Curcuma aromatica oil is a traditional herbal medicine demonstrating protective and anti-fibrosis activities in renal fibrosis patients. However, study of its mechanism of action is challenged by its multiple components and multiple targets that its active agent acts on.. Nuclear magnetic resonance (NMR)-based metabonomics combined with clinical chemistry and histopathology examination were performed to evaluate intervening effects of Curcuma aromatica oil on renal interstitial fibrosis rats induced by unilateral ureteral obstruction. The metabolite levels were compared based on integral values of serum 1H NMR spectra from rats on 3, 7, 14, and 28 days after the medicine administration. Time trajectory analysis demonstrated that metabolic profiles of the agent-treated rats were restored to control levels after 7 days of dosage. The results confirmed that the agent would be an effective anti-fibrosis medicine in a time-dependent manner, especially in early renal fibrosis stage. Targeted metabolite analysis showed that the medicine could lower levels of lipid, acetoacetate, glucose, phosphorylcholine/choline, trimethylamine oxide and raise levels of pyruvate, glycine in the serum of the rats. Serum clinical chemistry and kidney histopathology examination dovetailed well with the metabonomics data.. The results substantiated that Curcuma aromatica oil administration can ameliorate renal fibrosis symptoms by inhibiting some metabolic pathways, including lipids metabolism, glycolysis and methylamine metabolism, which are dominating targets of the agent working in vivo. This study further strengthens the novel analytical approach for evaluating the effect of traditional herbal medicine and elucidating its molecular mechanism.

    Topics: Animals; Curcuma; Fibrosis; Kidney Diseases; Male; Metabolomics; Plant Oils; Proton Magnetic Resonance Spectroscopy; Rats, Sprague-Dawley; Time Factors; Ureteral Obstruction

2014
Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome.
    PloS one, 2013, Volume: 8, Issue:2

    Acute Respiratory Distress Syndrome (ARDS) is a clinical syndrome characterized by diffuse alveolar damage usually secondary to an intense host inflammatory response of the lung to a pulmonary or extrapulmonary infectious or non-infectious insult often leading to the development of intra-alveolar and interstitial fibrosis. Curcumin, the principal curcumoid of the popular Indian spice turmeric, has been demonstrated as an anti-oxidant and anti-inflammatory agent in a broad spectrum of diseases. Using our well-established model of reovirus 1/L-induced acute viral pneumonia, which displays many of the characteristics of the human ALI/ARDS, we evaluated the anti-inflammatory and anti-fibrotic effects of curcumin. Female CBA/J mice were treated with curcumin (50 mg/kg) 5 days prior to intranasal inoculation with 10(7)pfu reovirus 1/L and daily, thereafter. Mice were evaluated for key features associated with ALI/ARDS. Administration of curcumin significantly modulated inflammation and fibrosis, as revealed by histological and biochemical analysis. The expression of IL-6, IL-10, IFNγ, and MCP-1, key chemokines/cytokines implicated in the development of ALI/ARDS, from both the inflammatory infiltrate and whole lung tissue were modulated by curcumin potentially through a reduction in the phosphorylated form of NFκB p65. While the expression of TGFß1 was not modulated by curcumin, TGFß Receptor II, which is required for TGFß signaling, was significantly reduced. In addition, curcumin also significantly inhibited the expression of α-smooth muscle actin and Tenascin-C, key markers of myofibroblast activation. This data strongly supports a role for curcumin in modulating the pathogenesis of viral-induced ALI/ARDS in a pre-clinical model potentially manifested through the alteration of inflammation and myofibroblast differentiation.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Chemokine CCL2; Curcumin; Disease Models, Animal; Female; Fibrosis; Gene Expression; Humans; Inflammation; Injections, Intraperitoneal; Interferon-gamma; Interleukin-10; Interleukin-6; Mice; Mice, Inbred CBA; Orthoreovirus, Mammalian; Protein Serine-Threonine Kinases; Receptor, Transforming Growth Factor-beta Type II; Receptors, Transforming Growth Factor beta; Reoviridae Infections; Respiratory Distress Syndrome; Signal Transduction; Tenascin; Transcription Factor RelA; Transforming Growth Factor beta1

2013
Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway.
    Molecular nutrition & food research, 2013, Volume: 57, Issue:9

    We hypothesized that curcumin, by increasing the expression of nuclear factor-erythroid-2-related factor 2 (Nrf2), could reduce oxidative stress, inflammation, and renal fibrosis in remnant kidney.. Sprague-Dawley rats were subjected to 5/6 nephrectomy and randomly assigned to untreated (Nx), curcumin-treated (75 mg/kg/day, orally), and telmisartan-treated groups (10 mg/kg/day, orally; as positive control). Sham-operated rats also served as controls. Five/sixth nephrectomy caused renal dysfunction, as evidenced by elevated proteinuria, blood urea nitrogen, and plasma creatinine, and decreased creatinine clearance that were ameliorated by curcumin or telmisartan treatment. The Nx rats demonstrated reduced Nrf2 protein expression, whereas the Kelch-like ECH-associated protein 1 was upregulated and heme oxygenase-1 level was significantly diminished. Consequently, Nx animals had significantly higher kidney malondialdehyde concentration and lower glutathione peroxidase activity, which was associated with the upregulation of nicotinamide adenine dinucleotide phosphatase oxidase subunit (p67(phox) and p22(phox) ), NF-kappaB p65, TNF-α, TGF-β1, cyclooxygenase-2, and fibronectin accumulation in remnant kidney. Interestingly, all of these changes were ameliorated by curcumin or telmisartan.. These findings demonstrate that, by modulating Nrf2-Keap1 pathway, the curcumin effectively attenuates oxidative stress, inflammation, and renal fibrosis, which suggest that curcumin hold promising potential for safe treatment of chronic kidney disease.

    Topics: Animals; Benzimidazoles; Benzoates; Blood Pressure; Blood Urea Nitrogen; Creatinine; Curcumin; Cyclooxygenase 2; Fibronectins; Fibrosis; Heme Oxygenase (Decyclizing); Inflammation; Intracellular Signaling Peptides and Proteins; Kelch-Like ECH-Associated Protein 1; Kidney; Kidney Diseases; Male; Nephrectomy; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Proteinuria; Rats; Rats, Sprague-Dawley; Signal Transduction; Telmisartan; Transforming Growth Factor beta1; Tumor Necrosis Factor-alpha

2013
Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats.
    British journal of pharmacology, 2012, Volume: 166, Issue:3

    Inflammation is involved in the development and/or progression of many diseases including diabetic complications. Investigations on novel anti-inflammatory agents may offer new approaches for the prevention of diabetic nephropathy. Our previous bioscreening of synthetic analogues of curcumin revealed C66 as a novel anti-inflammatory compound against LPS challenge in macrophages. In this study, we hypothesized that C66 affects high glucose (HG)-induced inflammation profiles in vitro and in vivo and then prevents renal injury in diabetic rats via its anti-inflammatory actions.. Primary peritoneal macrophages (MPM), prepared from C57BL/6 mice, were treated with HG in the presence or absence of C66. Diabetes was induced in Sprague-Dawley rats with streptozotocin, and the effects of C66 (0.2, 1.0 or 5.0 mg·kg(-1) ), administered daily for 6 weeks, on plasma TNF-α levels and expression of inflammatory genes in the kidney were assessed.. Pretreatment of MPMs with C66 reduced HG-stimulated production of TNF-α and NO, inhibited HG-induced IL-1β, TNF-α, IL-6, IL-12, COX-2 and iNOS mRNA transcription, and the activation of JNK/NF-kB signalling. In vivo, C66 inhibited the increased plasma TNF-α levels and renal inflammatory gene expression, improved histological abnormalities and fibrosis of diabetic kidney, but did not affect the hyperglycaemia in these diabetic rats.. The anti-inflammatory effects of C66 are mediated by inhibiting HG-induced activation of the JNK/NF-κB pathway, rather than by reducing blood glucose in diabetic rats. This novel compound is a potential anti-inflammatory agent and might be beneficial for the prevention of diabetic nephropathy.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Benzylidene Compounds; Blood Glucose; Blotting, Western; Body Weight; Cell Culture Techniques; Cell Movement; Curcumin; Cyclohexanones; Cytokines; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Dose-Response Relationship, Drug; Fibrosis; Glucose; Macrophages, Peritoneal; Male; Mice; Mice, Inbred C57BL; Organ Size; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction

2012
Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC-MAPK signaling pathway.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2012, Oct-09, Volume: 47, Issue:3

    The development of diabetic cardiomyopathy is accompanied with a high membrane-bound protein kinase C (PKC) levels. Curcumin is a naturally occurring compound which is known to inhibit PKC activity. However, the effects of curcumin on ameliorating diabetic cardiomyopathy are still undefined. We evaluated whether curcumin treatment is associated with the modulation of PKC-α and -β₂-mitogen-activated protein kinase (MAPK) pathway in experimental diabetic cardiomyopathy. Diabetes was induced in male Sprague-Dawley rats by streptozotocin (STZ). Curcumin (100mg/kg/day) was started three weeks after STZ injection and was given for 8 weeks. We demonstrate that curcumin significantly prevented diabetes-induced translocation of PKC-α and -β2 to membranous fraction and diabetes-induced increased phosphorylation of p38MAPK and extracellular regulated-signal kinase (ERK)1/2 in left ventricular tissues of diabetic rats. Curcumin treatment also markedly decreased NAD(P)H oxidase subunits (p67phox, p22phox, gp91phox), growth factors (transforming growth factor-β, osteopontin) and myocyte enhancer factor-2 protein expression as well as inhibited NF-κB activity at nuclear level. Furthermore, curcumin decreased the mRNA expression of transcriptional coactivator p300 and atrial natriuretic peptide, decreased accumulation of ECM protein and reversed the increment of superoxide production in left ventricular tissues, as evidenced by dihydroethidium staining. It is also significantly lowered plasma glucose and attenuated oxidative stress, as determined by lipid peroxidation and activity of anti-oxidant enzyme, and as a result attenuated cardiomyocyte hypertrophy, myocardial fibrosis and left ventricular dysfunction. Taken together, it is suggested that curcumin by inhibiting PKC-α and -β₂-MAPK pathway may be useful as an adjuvant therapy for the prevention of diabetic cardiomyopathy.

    Topics: Animals; Curcumin; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetic Cardiomyopathies; Fibrosis; Glutathione Peroxidase; Heart Ventricles; Hemodynamics; Hyperglycemia; Lipid Peroxidation; Male; Myocytes, Cardiac; Oxidative Stress; Protein Kinase Inhibitors; Protein Kinases; Rats; Rats, Sprague-Dawley

2012
Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats.
    PloS one, 2012, Volume: 7, Issue:12

    Diabetic cardiomyopathy (DCM), characterized by myocardial structural and functional changes, is an independent cardiomyopathy that develops in diabetic individuals. The present study was sought to investigate the effect of curcumin on modulating DCM and the mechanisms involved.. An experimental diabetic rat model was induced by low dose of streptozoticin(STZ) combined with high energy intake on rats. Curcumin was orally administrated at a dose of 100 or 200 mg · kg(-1) · d(-1), respectively. Cardiac function was evaluated by serial echocardiography. Myocardial ultrastructure, fibrosis area and apoptosis were assessed by histopathologic analyses. Metabolic profiles, myocardial enzymes and oxidative stress were examined by biochemical tests. Inflammatory factors were detected by ELISA, and interrelated proteins were measured by western blot.. Rats with DCM showed declined systolic myocardial performance associated with myocardial hypertrophy and fibrosis, which were accompanied with metabolism abnormalities, aberrant myocardial enzymes, increased AGEs (advanced glycation end products) accumulation and RAGE (receptor for AGEs) expression, elevated markers of oxidative stress (MDA, SOD, the ratio of NADP(+)/NADPH, Rac1 activity, NADPH oxidase subunits expression of gp91(phox) and p47(phox) ), raised inflammatory factor (TNF-α and IL-1β), enhanced apoptotic cell death (ratio of bax/bcl-2, caspase-3 activity and TUNEL), diminished Akt and GSK-3β phosphorylation. Remarkably, curcumin attenuated myocardial dysfunction, cardiac fibrosis, AGEs accumulation, oxidative stress, inflammation and apoptosis in the heart of diabetic rats. The inhibited phosphorylation of Akt and GSK-3β was also restored by curcumin treatment.. Taken together, these results suggest that curcumin may have great therapeutic potential in the treatment of DCM, and perhaps other cardiovascular disorders, by attenuating fibrosis, oxidative stress, inflammation and cell death. Furthermore, Akt/GSK-3β signaling pathway may be involved in mediating these effects.

    Topics: Animals; Apoptosis; Cell Death; Curcumin; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Fibrosis; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heart; Inflammation; Male; Myocardium; Oxidative Stress; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Wistar; Receptor for Advanced Glycation End Products; Receptors, Immunologic; Ventricular Dysfunction, Left

2012
Curcumin and saikosaponin a inhibit chemical-induced liver inflammation and fibrosis in rats.
    The American journal of Chinese medicine, 2010, Volume: 38, Issue:1

    Curcumin and saikosaponin A as antioxidants improve antioxidant status. This study investigated the anti-inflammatory and antifibrotic actions of curcumin and saikosaponin A on CCl(4)-induced liver damage. Sprague-Dawley rats were randomly divided into control, CCl(4), CCl(4)+ curcumin (0.005%; CU), CCl(4) + saikosaponin A (0.004%; SS), and CCl(4) + curcumin + saikosaponin A (0.005% + 0.004%; CU + SS) groups. Carbon tetrachloride (40% in olive oil) at a dose of 0.75 ml/kg was injected intraperitoneally once a week. Curcumin and saikosaponin A were supplemented alone or in combination with diet 1 week before CCl(4) injection for 8 weeks. After 8-week supplementation, histopathological results showed hepatic collagen deposition was significantly reduced in the CU and SS groups, and activated nuclear factor-kappa B expression induced by CCl(4) in the liver was significantly inhibited by curcumin and/or saikosaponin A. Hepatic proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were significantly inhibited, and anti-inflammatory cytokine interleukin-10 was significantly increased by supplementation with curcumin and/or saikosaponin A. Additionally, curcumin and/or saikosaponin A significantly reduced the increased levels of hepatic transforming growth factor-beta1 and hydroxyproline after CCl(4) treatment. Therefore, supplementation with curcumin and/or saikosaponin A suppress inflammation and fibrogenesis in rats with CCl(4)-induced liver injury. However, the combination has no additive effects on anti-inflammation and antifibrosis.

    Topics: Animals; Anti-Inflammatory Agents; Bupleurum; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Collagen; Curcuma; Curcumin; Cytokines; Dietary Supplements; Drug Therapy, Combination; Fibrosis; Hydroxyproline; Inflammation; Liver; Male; NF-kappa B; Oleanolic Acid; Phytotherapy; Plant Extracts; Plant Roots; Random Allocation; Rats; Rats, Sprague-Dawley; Rhizome; Saponins; Transforming Growth Factor beta1

2010
The effects of dietary curcumin and rutin on colonic inflammation and gene expression in multidrug resistance gene-deficient (mdr1a-/-) mice, a model of inflammatory bowel diseases.
    The British journal of nutrition, 2009, Volume: 101, Issue:2

    Damage of the intestinal epithelial barrier by xenobiotics or reactive oxygen species and a dysregulated immune response are both factors involved in the pathogenesis of inflammatory bowel diseases (IBD). Curcumin and rutin are polyphenolic compounds known to have antioxidant and anti-inflammatory activities, but their mechanism(s) of action are yet to be fully elucidated. Multidrug resistance gene-deficient (mdr1a-/- ) mice spontaneously develop intestinal inflammation, predominantly in the colon, with pathology similar to IBD, so this mouse model is relevant for studying diet-gene interactions and potential effects of foods on remission or development of IBD. The present study tested whether the addition of curcumin or rutin to the diet would alleviate colonic inflammation in mdr1a-/- mice. Using whole-genome microarrays, the effect of dietary curcumin on gene expression in colon tissue was also investigated. Twelve mice were randomly assigned to each of three diets (control (AIN-76A), control +0.2% curcumin or control +0.1% rutin) and monitored from the age of 7 to 24 weeks. Curcumin, but not rutin, significantly reduced histological signs of colonic inflammation in mdr1a-/- mice. Microarray and pathway analyses suggested that the effect of dietary curcumin on colon inflammation could be via an up-regulation of xenobiotic metabolism and a down-regulation of pro-inflammatory pathways, probably mediated by pregnane X receptor (Pxr) and peroxisome proliferator-activated receptor alpha (Ppara) activation of retinoid X receptor (Rxr). These results indicate the potential of global gene expression and pathway analyses to study and better understand the effect of foods in modulating colonic inflammation.

    Topics: Animals; Anti-Inflammatory Agents; ATP Binding Cassette Transporter, Subfamily B; Base Sequence; Colitis; Colon; Curcumin; Dietary Supplements; Fibrosis; Gene Expression; Gene Expression Regulation; Genome-Wide Association Study; Inflammatory Bowel Diseases; Liver; Mice; Mice, Knockout; Models, Animal; Molecular Sequence Data; Random Allocation; Reverse Transcriptase Polymerase Chain Reaction; Rutin; Staining and Labeling

2009
Curcumin prevents and reverses murine cardiac hypertrophy.
    The Journal of clinical investigation, 2008, Volume: 118, Issue:3

    Chromatin remodeling, particularly histone acetylation, plays a critical role in the progression of pathological cardiac hypertrophy and heart failure. We hypothesized that curcumin, a natural polyphenolic compound abundant in the spice turmeric and a known suppressor of histone acetylation, would suppress cardiac hypertrophy through the disruption of p300 histone acetyltransferase-dependent (p300-HAT-dependent) transcriptional activation. We tested this hypothesis using primary cultured rat cardiac myocytes and fibroblasts as well as two well-established mouse models of cardiac hypertrophy. Curcumin blocked phenylephrin-induced (PE-induced) cardiac hypertrophy in vitro in a dose-dependent manner. Furthermore, curcumin both prevented and reversed mouse cardiac hypertrophy induced by aortic banding (AB) and PE infusion, as assessed by heart weight/BW and lung weight/BW ratios, echocardiographic parameters, and gene expression of hypertrophic markers. Further investigation demonstrated that curcumin abrogated histone acetylation, GATA4 acetylation, and DNA-binding activity through blocking p300-HAT activity. Curcumin also blocked AB-induced inflammation and fibrosis through disrupting p300-HAT-dependent signaling pathways. Our results indicate that curcumin has the potential to protect against cardiac hypertrophy, inflammation, and fibrosis through suppression of p300-HAT activity and downstream GATA4, NF-kappaB, and TGF-beta-Smad signaling pathways.

    Topics: Acetylation; Animals; Cardiomegaly; Curcumin; DNA; Enzyme Inhibitors; Fibrosis; GATA4 Transcription Factor; Histone Deacetylase Inhibitors; Histones; Male; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; p300-CBP Transcription Factors; Rats; Rats, Sprague-Dawley

2008
Attenuation of renal fibrosis by curcumin in rat obstructive nephropathy.
    Urology, 2006, Volume: 67, Issue:2

    To test whether curcumin has a protective action against interstitial inflammation and the development of renal fibrosis in obstructive nephropathy. We also tested whether inhibition of nuclear factor kappa-B (NF-kappaB) and activator protein-1 (AP-1) by curcumin is involved in these mechanisms.. Adult male rats underwent unilateral ureteral obstruction. The rats were treated with curcumin (200 mg/kg/day or 800 mg/kg/day), NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC; 200 mg/kg/day), or vehicle by gavage. Sham-operated rats served as controls. Seven days after unilateral ureteral obstruction, the activity of NF-kappaB and AP-1 was examined by electrophoretic mobility shift assay using nuclear protein extracts from the renal cortex. Gene expression of chemokines and pro-fibrotic molecules was determined by real-time reverse transcriptase-polymerase chain reaction. Macrophage infiltration and collagen III accumulation in the cortical interstitium was examined immunohistochemically.. Both curcumin and PDTC significantly attenuated interstitial macrophage influx and renal fibrosis. Ureteral occlusion activated both NF-kappaB and AP-1-DNA binding. Curcumin and PDTC significantly inhibited NF-kappaB activity, but not AP-1. Gene expression of chemokines and pro-fibrotic molecules was upregulated in unilateral ureteral obstruction that was attenuated by either curcumin or PDTC.. Curcumin protected against the renal interstitial inflammation and fibrosis elicited by ureteral occlusion. Inhibition of the NF-kappaB-dependent pathway is at least in part involved in the mechanisms, but AP-1 inhibition is unlikely to be involved in the beneficial effects of curcumin.

    Topics: Animals; Curcumin; Fibrosis; Kidney; Male; NF-kappa B; Rats; Rats, Sprague-Dawley; Transcription Factor AP-1; Ureteral Obstruction

2006
Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1.
    Kidney international, 2005, Volume: 68, Issue:5

    Induction of heme oxygenase 1 (HO-1) has been shown to be beneficial in a variety of pathologic settings. Curcumin, a polyphenolic compound, has antifibrotic effects in lung models of fibrosis, and is known to induce HO-1 in renal tubular cells. In this study, we determined whether curcumin has antifibrotic properties in glomerular fibrosis and if these effects are mediated by induction of HO-1.. Curcumin effects on HO-1 expression in cultured mesangial cells and in glomeruli in vivo were analyzed by Northern and Western blotting. The dose-dependent effect of curcumin on glomerular fibrosis was tested in the anti-Thy 1 glomerulonephritis model. Curcumin was applied at doses of 10 to 200 mg/kg body weight by intraperitoneal injection from days 3 to 5 after induction of disease. On day 6, glomeruli were harvested and markers of fibrosis [plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-beta (TGF-beta), fibronectin, periodic acid-Schiff (PAS) staining] were analyzed. The effect of HO-1 inhibition was tested in a second experiment were nephritic rats were treated with curcumin (100 mg/kg body weight) or the combination of curcumin and the HO-1 inhibitor zinc protoporphyrin (100 microg/kg).. Curcumin potently induced mesangial cell HO-1 expression in vitro and up-regulated glomerular HO-1 expression in nephritic animals in vivo. Curcumin treatment led to a significant, dose-dependent reduction of markers of fibrosis and proteinuria, with maximal inhibition at doses of 50 to 100 mg/kg. Beneficial effects of curcumin on markers of fibrosis and proteinuria were lost after HO-1 inhibition.. Curcumin has antifibrotic effects in glomerular disease, which are mediated through an induction of HO-1.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Curcumin; Drug Interactions; Enzyme Inhibitors; Fibrosis; Glomerulonephritis; Heme Oxygenase-1; Isoantibodies; Kidney Glomerulus; Male; Proteinuria; Rats; Rats, Sprague-Dawley; Up-Regulation

2005
Effects of different ingredients of zedoary on gene expression of HSC-T6 cells.
    World journal of gastroenterology, 2005, Nov-21, Volume: 11, Issue:43

    To investigate the effects of four different ingredients of zedoary (Curcuma aromatica oil, Curcumol, beta-elemence, and Curcumin) on the gene expressions of hepatic stellate cells (HSCs), and to explore the molecular mechanism of zedoary against hepatic fibrosis at gene network level.. We detected the mRNA sequences of 50 liver fibrosis-related genes in GenBank and designed oligonucleotide probes. We synthesized oligonucleotides with PE8909 DNA synthesizing instrument, and carried out oligonucleotide microarray with OGR-04 dropping instrument and aldehyded glass chip. Cultured HSC-T6 cells were treated with different concentrations of Colchicine, Curcuma aromatica oil, Curcumol, beta-elemence, and Curcumin. According to the experiment of cell toxicity, we took the appropriate concentrations of medicines that resulted in over 50% of cell survival as experiment concentrations. We collected the cells at 1, 6, 12, and 24 h, and extracted total RNA with TRIzol reagent, then labeled cDNAs with Cy3-dUTP and Cy5-dUTP. These labeled cDNAs were hybridized to an oligonucleotide microarray which was washed several times and scanned by scanner GenePix 4000B. Different gene expressions of HSC-T6 cells were analyzed by ImaGene 4.2 software.. After HSC-T6 cells were cultured in a medium containing 6.25 microg/mL Colchicine for 12 h, expression of TIMP-1 decreased 2.2-folds. After HSC-T6 cells were cultured in a medium containing 78.125 microg/mL of Curcuma aromatica oil for 24 h, the expression of TIMP-2 and IL-6 decreased 2.3- and 2.2-folds, respectively. Moreover, after HSC-T6 cells were cultured in a medium containing 1.5625 microg/mL of Curcumol for 12 h, the expression of TGFbeta1 and P450a decreased 2.3- and 2.1-folds, respectively.. Our results may show the possible molecular mechanism of Curcuma aromatica oil and Curcumol against hepatic fibrosis.

    Topics: Cells, Cultured; Culture Media; Curcuma; DNA Probes; Fibrosis; Gene Expression; Hepatocytes; Humans; Liver; Medicine, Chinese Traditional; Oligonucleotide Array Sequence Analysis; Phytotherapy; Plant Extracts; RNA, Transfer

2005
Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells.
    Kidney international, 2004, Volume: 66, Issue:1

    Over-expression of transforming growth factor-beta (TGF-beta) contributes greatly to fibrotic kidney disease. The activator protein-1 (AP-1) inhibitor curcumin, a polyphenolic compound derived from Curcuma longa, has been shown to reduce collagen accumulation in experimental pulmonary fibrosis. Here, we investigate curcumin's ability to modulate TGF-beta's profibrotic actions in vitro.. NRK49F rat renal fibroblasts were stimulated with TGF-beta (5 ng/mL), and the effects of curcumin on TGF-beta-regulated genes, TGF-beta receptors, and phosphorylated SMAD isoforms were analyzed by Northern blotting, enzyme-linked immunosorbent assay (ELISA), and Western blotting. The effects of c-jun depletion on TGF-beta-regulated gene and protein expression were analyzed with RNAi.. When applied 30 minutes before TGF-beta, curcumin dose dependently and dramatically reduced TGF-beta-induced increases in plasminogen activator inhibitor-1 (PAI-1), TGF-beta1, fibronectin (FN) and collagen I (Col I) mRNA, and in PAI-1 and fibronectin protein. Prolonged curcumin treatment (>6 h) significantly reduced TGF-beta receptor type II levels and SMAD2/3 phosphorylation in response to added TGF-beta. Depletion of cellular c-jun levels with a RNAi method mimicked the effects of curcumin on expression of TGF-beta1, FN, and Col I, but not PAI-1.. Curcumin blocks TGF-beta's profibrotic actions on renal fibroblasts through down-regulation of TbetaRII, and through partial inhibition of c-jun activity. These in vitro data suggest that curcumin might be an effective antifibrotic drug in the treatment of chronic kidney disease.

    Topics: Animals; Cells, Cultured; Curcumin; DNA-Binding Proteins; Dose-Response Relationship, Drug; Down-Regulation; Fibroblasts; Fibronectins; Fibrosis; Gene Expression; Glomerular Mesangium; Kidney; Phosphorylation; Plasminogen Activator Inhibitor 1; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-jun; Rats; Receptor, Transforming Growth Factor-beta Type II; Receptors, Transforming Growth Factor beta; Signal Transduction; Smad2 Protein; Smad3 Protein; Time Factors; Trans-Activators; Transforming Growth Factor beta

2004