boron has been researched along with Adenoma* in 3 studies
3 other study(ies) available for boron and Adenoma
Article | Year |
---|---|
Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.
Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors. Topics: Adenoma; Apoptosis; bcl-2-Associated X Protein; Boron; Boron Neutron Capture Therapy; Carbon; Cell Survival; Drug Delivery Systems; Folate Receptor 1; HeLa Cells; Humans; Isotopes; Nanoparticles; Pituitary Neoplasms; Proto-Oncogene Proteins c-bcl-2; Tumor Cells, Cultured | 2013 |
Selective uptake of p-borophenylalanine by undifferentiated thyroid carcinoma for boron neutron capture therapy.
Undifferentiated thyroid carcinoma (UTC) lacks an effective treatment. Boron neutron capture therapy (BNCT) is based on the selective uptake of 10B-boronated compounds by some tumors, followed by irradiation with an appropriate neutron beam. The radioactive boron originated (11B) decays releasing 7Li, gamma rays and alpha particles, and these latter will destroy the tumor. In order to explore the possibility of applying BNCT to UTC we have studied the biodistribution of BPA. In in vitro studies, the uptake of p-10borophenylalanine (BPA) by the UTC cell line ARO, primary cultures of normal bovine thyroid cells (BT), and human follicular adenoma (FA) thyroid was studied. No difference in BPA uptake was observed between proliferating and quiescent ARO cells. The uptake by quiescent ARO, BT, and FA showed that the ARO/BT and ARO/FA ratios were 4 and 5, respectively (p < 0.001). In in vivo studies, ARO cells were transplanted into the scapular region of NIH nude mice, and after 2 weeks BPA (350 or 600 mg/kg body weight) was injected intraperitoneally. The animals were sacrificed between 30 and 150 minutes after the injection. With 350 mg, tumor uptake was highest after 60 minutes and the tumor/normal thyroid and tumor/blood ratios were 3 and 5, respectively. When 600 mg/kg body weight BPA were administered, after 90 minutes the tumor/blood, tumor/normal thyroid, and tumor/distal skin ratios for 10B concentrations per gram of tissue were approximately 3, showing a selective uptake by the tumor. The present experimental results open the possibility of applying BNCT for the treatment of UTC. Topics: Adenoma; Animals; Boron; Boron Compounds; Boron Neutron Capture Therapy; Cattle; Cell Division; Cells, Cultured; Humans; Isotopes; Kinetics; Mice; Mice, Nude; Neoplasm Transplantation; Phenylalanine; Radiation-Sensitizing Agents; Thyroid Gland; Thyroid Neoplasms; Tumor Cells, Cultured | 2002 |
Biodistribution of boron in dogs with spontaneous intracranial tumors following borocaptate sodium administration.
Borocaptate sodium (Na2B12H11SH) is a potentially useful compound for boron neutron capture therapy of intracranial tumors. Tumor and normal tissue boron concentrations were evaluated in 30 dogs with naturally occurring intracranial tumors after i.v. borocaptate sodium infusion (55 mg boron/kg). Postmortem tissue boron concentrations were measured for three postinfusion time periods (2, 6, and 12 h) by inductively coupled plasma atomic emission spectroscopy. Mean boron concentrations for extracerebral tumors were 40.6 +/- 16.9 (2 h; n = 8), 25.9 +/- 11.7 (6 h; n = 5), and 8.6 +/- 4.5 micrograms boron/g (12 h; n = 6). Mean boron concentrations for intracerebral tumors were 30.6 +/- 17.5 (2 h; n = 7) and 2.9 +/- 1.8 micrograms boron/g (6 h; n = 4). Mean tumor boron concentrations were lower at longer postinfusion times. The tumor:normal brain boron concentration ranged from 0.8 to 19.8. Tumor:blood boron concentrations were less than one for all but three dogs and ranged from 0.04 to 1.4. Mean peritumor boron concentrations were highly variable but exceeded that of normal brain in 10 of 20 dogs. In some dogs, the mean peritumor boron concentration was similar to or exceeded the tumor boron concentration. Distant or contralateral normal brain had consistently low boron concentrations. Some cranial and systemic tissues had high boron concentrations, indicating substantial extravascular boron. The spontaneous animal tumors provided a realistic spectrum of data and enabled extensive sampling of diseased and normal tissues. The biodistribution of boron from borocaptate sodium administration was partially favorable because of high tumor boron concentrations. Empirical radiation dose tolerance studies should be used to determine the impact of the unfavorably high boron concentration of blood and some cranial tissues. Topics: Adenoma; Animals; Blood-Brain Barrier; Borohydrides; Boron; Boron Neutron Capture Therapy; Brain; Brain Neoplasms; Dogs; Meningioma; Nasal Cavity; Nose Neoplasms; Pituitary Neoplasms; Sulfhydryl Compounds; Tissue Distribution | 1994 |