alamandine and Sepsis

alamandine has been researched along with Sepsis* in 3 studies

Other Studies

3 other study(ies) available for alamandine and Sepsis

ArticleYear
Alamandine treatment prevents LPS-induced acute renal and systemic dysfunction with multi-organ injury in rats via inhibiting iNOS expression.
    European journal of pharmacology, 2023, Dec-05, Volume: 960

    Sepsis is defined as the dysregulated immune response leading to multi-organ dysfunction and injury. Sepsis-induced acute kidney injury is a significant contributor to morbidity and mortality. Alamandine (ALA) is a novel endogenous peptide of the renin-angiotensin-aldosterone system. It is known for its anti-inflammatory and anti-apoptotic effects, but its functional and vascular effects on sepsis remain unclear. We aimed to investigate the effects of ALA, as a pre- and post-treatment agent, on lipopolysaccharide (LPS)-induced systemic and renal dysfunction and injury in the LPS-induced endotoxemia model in rats via functional, hemodynamic, vascular, molecular, biochemical, and histopathological evaluation. 10 mg/kg intraperitoneal LPS injection caused both hepatic and renal injury, decreased blood flow in several organs, and renal dysfunction at 20 h in Sprague-Dawley rats. Our results showed that ALA treatment ameliorated systemic and renal inflammation, reduced inflammatory cytokines, prevented the enhancement of the mortality rate, reversed vascular dysfunction, corrected decreased blood flows in several organs, and reduced renal and hepatic injury via inhibiting iNOS (inducible nitric oxide synthase) and caspase expressions in the kidney. In addition, expressions of different ALA-related receptors showed alterations in this model, and ALA treatment reversed these alterations. These data suggest that ALA's systemic and renal protective effects are achieved through its anti-inflammatory, anti-pyroptotic, and anti-apoptotic effects on hemodynamic and vascular functions via reduced iNOS expression.

    Topics: Acute Kidney Injury; Animals; Anti-Inflammatory Agents; Kidney; Lipopolysaccharides; Nitric Oxide Synthase Type II; Rats; Rats, Sprague-Dawley; Sepsis

2023
Alamandine, a derivative of angiotensin-(1-7), alleviates sepsis-associated renal inflammation and apoptosis by inhibiting the PI3K/Ak and MAPK pathways.
    Peptides, 2021, Volume: 146

    Sepsis is a frequent cause of kidney injury. The present study investigated whether Alamandine (Ala) could alleviate sepsis-associated renal injury by reducing inflammation and apoptosis. In addition, we investigated downstream signaling pathways modulated by Ala. Studies were performed in mice treated with lipopolysaccharide (LPS) and in the human proximal tubular epithelial cell line HK-2. The increase in serum creatinine, blood urea nitrogen, cystatin C and Fg, and neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in the kidneys of mice treated with LPS were reduced after administration of Ala. Exposure to LPS increased interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) in mice and HK-2 cells, but were reduced after Ala treatment. Furthermore, increased levels of cleaved caspase 3, cleaved caspase 7, cleaved caspase 9, cleaved poly (ADP-ribose) polymerase (PARP) and Bax and reduced levels of Bcl2 in LPS-treated mice and HK-2 cells were reversed after Ala administration. In addition, LPS increased the levels of p-PI3K/PI3K, p-Akt/Akt, p-ERK/ERK, p-JNK/JNK, p-p38/p38 and p-FoxO1 in HK-2 cells, and all were reversed after Ala administration. These results indicate that Ala could improve renal function and inhibit inflammation and apoptosis in LPS induced sepsis mouse models. We demonstrated that Ala attenuated LPS induced sepsis by inhibiting the PI3K/Akt and MAPK signaling pathways.

    Topics: Angiotensin I; Animals; Apoptosis; Cell Line; Dose-Response Relationship, Drug; Humans; Inflammation; Kidney; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Oligopeptides; Peptide Fragments; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Sepsis; Signal Transduction

2021
Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways.
    Life sciences, 2018, Aug-01, Volume: 206

    Sepsis-induced myocardial dysfunction represents a major cause of death. Alamandine is an important biologically active peptide. The present study evaluated whether alamandine improves cardiac dysfunction, inflammation, and apoptosis, and affects the signaling pathways involved in these events. Experiments were carried out in mice treated with lipopolysaccharide (LPS) or alamandine, and in neonatal rat cardiomyocytes. Alamandine increased the ejection fraction and fractional shortening, both of which were decreased upon LPS infusion in mice. LPS and alamandine reduced blood pressure, and increased the expression of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) in the heart in mice. The LPS-induced decrease in α-myosin heavy chain (MHC) and β-MHC, and increase in S100 calcium binding protein A8 (S100A8) and S100A9, were reversed by alamandine pre-treatment. Alamandine pre-treatment prevented LPS-induced myocardial inflammation, apoptosis and autophagy. LPS increased p-ERK, p-JNK, and p-p38 levels, which were inhibited by alamandine. Dibutyryl cyclic AMP (db-cAMP) increased p-ERK, p-JNK, and p-p38 levels, and reversed the inhibitory effects of alamandine on the LPS-induced increase in p-ERK, p-JNK, and p-p38. Moreover, db-cAMP reduced the expression of α-MHC and β-MHC in cardiomyocytes, and reversed the almandine-induced attenuation of the LPS-induced decrease in α-MHC and β-MHC. These results indicate that alamandine attenuates LPS-induced cardiac dysfunction, resulting in increased cardiac contractility, and reduced inflammation, autophagy, and apoptosis. Furthermore, alamandine attenuates sepsis induced by LPS via inhibiting the mitogen-activated protein kinases (MAPKs) signaling pathways.

    Topics: Animals; Animals, Newborn; Apoptosis; Autophagy; Blood Pressure; Echocardiography; Heart Diseases; Lipopolysaccharides; MAP Kinase Signaling System; Mice; Myocardial Contraction; Myocytes, Cardiac; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oligopeptides; Rats; Sepsis; Stroke Volume

2018