stilbenes and chrysin

stilbenes has been researched along with chrysin* in 9 studies

Reviews

1 review(s) available for stilbenes and chrysin

ArticleYear
Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines.
    Nutrition research (New York, N.Y.), 2011, Volume: 31, Issue:2

    Colorectal cancer (CRC) is the second most fatal and the third most diagnosed type of cancer worldwide. Despite having multifactorial causes, most CRC cases are mainly determined by dietary factors. In recent years, a large number of studies have attributed a protective effect to polyphenols and foods containing these compounds (fruits and vegetables) against CRC. Indeed, polyphenols have been reported to interfere with cancer initiation, promotion, and progression, acting as chemopreventive agents. The aim of this review is to summarize the main chemopreventive properties of some polyphenols (quercetin, rutin, myricetin, chrysin, epigallocatechin-3-gallate, epicatechin, catechin, resveratrol, and xanthohumol) against CRC, observed in cell culture models. From the data reviewed in this article, it can be concluded that these compounds inhibit cell growth, by inducing cell cycle arrest and/or apoptosis; inhibit proliferation, angiogenesis, and/or metastasis; and exhibit anti-inflammatory and/or antioxidant effects. In turn, these effects involve multiple molecular and biochemical mechanisms of action, which are still not completely characterized. Thus, caution is mandatory when attempting to extrapolate the observations obtained in CRC cell line studies to humans.

    Topics: Animals; Anti-Inflammatory Agents; Anticarcinogenic Agents; Antioxidants; Apoptosis; Catechin; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Colorectal Neoplasms; Diet; Flavonoids; Fruit; Humans; Phenols; Polyphenols; Propiophenones; Quercetin; Resveratrol; Rutin; Stilbenes; Vegetables

2011

Other Studies

8 other study(ies) available for stilbenes and chrysin

ArticleYear
Short-step syntheses of naturally occurring polyoxygenated aromatics based on site-selective transformation.
    Bioscience, biotechnology, and biochemistry, 2017, Volume: 81, Issue:7

    Wogonin and astringin were synthesized from inexpensive chrysin and piceid in short steps. The key feature of these syntheses is site-selective transformation. The target molecules were obtained in 27 and 62% yields from the starting materials, respectively.

    Topics: Acetylation; Chemistry Techniques, Synthetic; Flavanones; Flavonoids; Glucosides; Humans; Molecular Structure; Stereoisomerism; Stilbenes

2017
In vitro studies on the inhibition of colon cancer by butyrate and polyphenolic compounds.
    Nutrition and cancer, 2011, Volume: 63, Issue:2

    Our aim was to investigate the effect of several dietary polyphenols on uptake of (14)C-butyrate ((14)C-BT) by Caco-2 cells and try to correlate this effect with the modulation of the anticarcinogenic effect of BT in these cells. Acutely, uptake of (14)C-BT (10 μM) was decreased by resveratrol, quercetin, myricetin, and chrysin, and increased by xanthohumol, catechin, and epicatechin; and uptake of (14)C-BT (20 mM) was reduced by resveratrol, quercetin, myricetin, chrysin, EGCG, and epicatechin. Resveratrol acts as a competitive inhibitor of (14)C-BT uptake. Chronically, quercetin and EGCG increased uptake of (14)C-BT (10 μM), whereas myricetin, rutin, chrysin, and xanthohumol decreased it. Moreover, catechin (1 μM), quercetin, myricetin, rutin, EGCG, and chrysin increased uptake of (14)C-BT (20 mM), whereas catechin (0.1 μM) decreased it. EGCG, myricetin, and catechin decreased MCT1 mRNA expression, while chrysin increased it; quercetin, rutin, and xanthohumol had no effect. BT (5 mM; 48 h) markedly decreased cellular viability and proliferation and increased cell differentiation and apoptosis. In general, combination of polyphenolic compounds with BT did not significantly modify these changes. In conclusion, changes in uptake of BT induced by polyphenols do not correlate with changes on the effect of BT upon cell viability, cell proliferation, differentiation, and apoptosis.

    Topics: Analysis of Variance; Anticarcinogenic Agents; Apoptosis; Butyrates; Caco-2 Cells; Catechin; Cell Differentiation; Cell Proliferation; Cell Survival; Flavonoids; Humans; Phenols; Polyphenols; Propiophenones; Quercetin; Regression Analysis; Resveratrol; Rutin; Stilbenes

2011
Resveratrol in combination with other dietary polyphenols concomitantly enhances antiproliferation and UGT1A1 induction in Caco-2 cells.
    Life sciences, 2011, Jun-06, Volume: 88, Issue:23-24

    The only FDA approved medication for colorectal cancer (CRC) prevention is celecoxib. Its adverse effects underline the need for safer drugs. Polyphenols like resveratrol are in clinical trials for this purpose. This study aimed at examining effects of resveratrol alone and in combination with curcumin or chrysin on UGT induction in Caco-2 cells. Phytochemical combinations were selected using drug combination analyses of various anti-proliferation ratios of resveratrol+curcumin and resveratrol+chrysin.. Cell proliferation and UGT1A1 induction assays were carried out with individual polyphenols and combinations. Cell viability was determined with AlamarBlue assays. UGT1A1 mRNA was quantified via real time RT-PCR. UGT activity was determined with 4-methylumbelliferone (4MU) glucuronidation.. Cell proliferation IC(50) estimates (± SE) for resveratrol, curcumin and chrysin were 20.8 ± 1.2, 20.1 ± 1.1 and 16.3 ± 1.3μM respectively. Combination of anti-proliferative effects showed additivity for resveratrol+chrysin and resveratrol+curcumin. Resveratrol at its IC(50) mediated a four-fold induction of UGT1A1 mRNA in a concentration independent manner. Chrysin at its IC(50) induced UGT1A1 expression seven-fold while Curcumin at its IC(90) mediated a two-fold induction. The 20 μM:40μ M resveratrol+curcumin and 20 μM :32 μM resveratrol+chrysin combinations mediated the greatest increases in mRNA expression (12 and 22 folds respectively). Significant increase in 4-MU glucuronidation was observed with combinations exhibiting maximal mRNA induction.. Phytochemical combinations can offer greater chemoprevention than single agents. These chemicals might offer safer options than present synthetic therapeutics for CRC prevention.

    Topics: Anticarcinogenic Agents; Caco-2 Cells; Cell Proliferation; Cell Survival; Colorectal Neoplasms; Curcumin; Dose-Response Relationship, Drug; Drug Synergism; Drug Therapy, Combination; Enzyme Induction; Flavonoids; Glucuronides; Glucuronosyltransferase; Humans; Inhibitory Concentration 50; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stilbenes

2011
CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells.
    Toxicology letters, 2009, Dec-15, Volume: 191, Issue:2-3

    Flavonoids have been proposed to exert beneficial effects in a multitude of disease states. However, evidence of potential toxic actions has also emerged. Since large doses of flavonoids can be encountered in the intestine simultaneously with ingested drugs and pollutants, this study aimed at investigating nine individual flavonoid compounds and their interactions with the major intestinal isoforms of cytochrome P450, i.e. CYPs 1A1 and 3A4, using human intestinal Caco-2 cells cultivated in a serum-free medium. Genistein, quercetin and chrysin provoked a dose-dependent inducing effect on the CYP1A1 activity, measured with the EROD assay. However, they did not affect the CYP1A1 mRNA expression, suggesting they are not aryl hydrocarbon receptor-ligands in intestinal cells and act at a post-transcriptional level. Chrysin, at 50 microM, was detected as a potent inhibitor of the TCDD-induced CYP1A1 activity, leading the activity to ca. 10% of the TCDD-control value (n=3), this effect involving, at least partly, direct interactions at the enzyme level. Quercetin was also shown to significantly inhibit the constitutive CYP3A4 activity, measured by the 6beta-(OH)-testosterone assay, and to impair its induction by 1,25-vitamin D(3). Chrysin, quercetin and genistein, were detected as significant inhibitors of the 1,25-vitamin D(3)-induced CYP3A4 activity. In vivo, these effects could result in reduced activation of procarcinogens and/or in drug bioavailability limitation. They underline the importance of intestinal studies to assess food safety and health risks linked to the ingestion of flavonoid-enriched supplements or functional foods.

    Topics: Caco-2 Cells; Calcitriol; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP3A; Diet; Dipeptidyl Peptidase 4; Dose-Response Relationship, Drug; Environmental Pollutants; Enzyme Induction; Enzyme Inhibitors; Flavonoids; Genistein; Humans; Intestinal Mucosa; Intestines; Polychlorinated Dibenzodioxins; Quercetin; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA; Stilbenes

2009
Phytochemicals induce breast cancer resistance protein in Caco-2 cells and enhance the transport of benzo[a]pyrene-3-sulfate.
    Toxicological sciences : an official journal of the Society of Toxicology, 2007, Volume: 96, Issue:2

    We have previously reported that breast cancer resistance protein (BCRP) is involved in the transport of phase II metabolites of the food carcinogen benzo[a]pyrene (BP) in the human intestinal cell line Caco-2. Furthermore, the expression of BCRP seemed most likely to be aryl hydrocarbon receptor (AhR) dependent. Since numerous plant-derived anticarcinogens with AhR-agonistic activity have been identified to date, in the present study we investigated the effects of naturally occurring dietary compounds and tert-butyl hydroquinone (TBHQ) for their effects on BCRP expression. In Caco-2 cells, the most pronounced induction of BCRP expression could be observed after treatment with TBHQ (100 microM), dibenzoylmethane (DBM, 50 microM), and quercetin (25 microM), while green tea component (-)-epicatechin (50 microM) decreased BCRP expression. On mRNA level, quercetin, chrysin, flavone, and indole-3-carbinol showed a strong inducing effect, while genistein had no effect on BCRP mRNA expression. Curcumin and resveratrol showed a strong effect on BCRP induction in MCF-7 wild-type cells but no response in AhR-deficient MCF-7AHR(200) cells, supporting our hypothesis that BCRP is regulated via AhR-dependent signaling pathways. Inhibition of proteasome-mediated degradation of ligand-activated AhR caused a "superinduction" of BCRP mRNA. Antioxidant responsive element activators sulforaphane and diethylmaleate (DEM) had no inducing effect on BCRP mRNA expression. Caco-2 cells pretreated with quercetin or DBM showed an enhancement of apically transported benzo[a]pyrene-3-sulfate, indicating that induced BCRP was functionally active. In conclusion, apart from the modulation of detoxifying enzymes in the intestine, induction of BCRP by dietary constituents may contribute to the detoxification of food-derived procarcinogens such as BP.

    Topics: 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Benzo(a)pyrene; Biological Transport; Caco-2 Cells; Catechin; Cell Line, Tumor; Chalcones; Flavonoids; Gene Expression; Humans; Hydroquinones; Indoles; Isothiocyanates; Maleates; Molecular Structure; Neoplasm Proteins; Plant Extracts; Quercetin; Receptors, Aryl Hydrocarbon; Resveratrol; RNA, Messenger; Silymarin; Stilbenes; Sulfoxides; Thiocyanates; Transfection

2007
Variable sulfation of dietary polyphenols by recombinant human sulfotransferase (SULT) 1A1 genetic variants and SULT1E1.
    Drug metabolism and disposition: the biological fate of chemicals, 2007, Volume: 35, Issue:5

    Human cytosolic sulfotransferases (SULTs) catalyze the sulfate conjugation of several important endo- and xenobiotics. Among the superfamily of SULT enzymes, SULT1A1 catalyzes the sulfation of small planar phenolic compounds, whereas SULT1E1 has a major role in estrogen conjugation. The human SULT1A1 gene has common single nucleotide polymorphisms that define three allozymes, SULT1A1*1, *2, and *3. The enzyme kinetics of SULT1A1 allozymes and SULT1E1 were characterized for the polyphenolic substrates apigenin, chrysin, epicatechin, quercetin, and resveratrol. Purified recombinant SULT proteins were generated in a baculoviral-insect cell system, and incubated in vitro with each substrate to determine catalytic activity. The effect of polyphenol sulfation was examined in mammalian cell lines stably expressing SULT1E1. For all polyphenols investigated, "normal-activity" SULT1A1*1 allozyme had significantly greater Vmax estimates than SULT1E1, and allele-specific differences in SULT1A1-mediated sulfation were observed. The polymorphic SULT1A1*2 allozyme exhibited low activity toward apigenin, epicatechin, and resveratrol. SULT1A1*1 and *3 acted as normal-activity allozymes for these substrates. Altered cellular proliferation was observed in MCF-7 cells stably expressing SULT1E1 upon treatment with chrysin, quercetin, or resveratrol, thus suggesting inactivation of these compounds by SULT1E1. These results suggest an important role for SULT isozymes and their pharmacogenetics in polyphenol disposition.

    Topics: Apigenin; Arylsulfotransferase; Catechin; Cell Proliferation; Diet; Flavonoids; Humans; Kinetics; Phenols; Polymorphism, Single Nucleotide; Polyphenols; Quercetin; Recombinant Proteins; Resveratrol; Stilbenes; Sulfates; Sulfotransferases; Tumor Cells, Cultured

2007
A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2004, Volume: 60, Issue:13

    Hydrophilic extracts of Scots pine (Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm(-1). Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm(-1). The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm(-1). The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm(-1)) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin.

    Topics: Acetone; Alkenes; Flavonoids; Hydrophobic and Hydrophilic Interactions; Molecular Structure; Phenol; Phenols; Pinus sylvestris; Plant Extracts; Spectrophotometry, Ultraviolet; Spectrum Analysis, Raman; Stilbenes; Water; Wood

2004
Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids.
    Xenobiotica; the fate of foreign compounds in biological systems, 2000, Volume: 30, Issue:9

    1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12+/-2 pM (quercetin), 1.0+/-0.04 microM (fisetin), 1.4+/-0.1 microM (myricetin), 2.2+/-0.1 microM (kaempferol) and 2.8+/-0.2 microM (apigenin). Similarly, in the duodenum, IC50 was 15+/-2 pM (quercetin), 1.3+/-0.1 microM (apigenin), 1.3+/-0.5 microM (fisetin), 2.3+/-0.1 microM (kaempferol) and 2.5+/-0.3 microM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three liver samples and was determined to be non-competitive and mixed in nature. Km (mean+/-SD; microM) was 0.23+/-0.07 (control), 0.40+/-0.08 (5 pM quercetin) and 0.56+/-0.09 (10 pM quercetin). Vmax (mean+/-SD; pmol min(-1) x mg(-1)) was 99+/-11 (control), 73+/-15 (5 pM quercetin) and 57 +/- 10 (10 pM quercetin). Kj and Kies estimates (mean+/-SD) were 3.7+/-1.8 pM and 12.1+/-1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis-Menten kinetics and Km and Vmax (mean+/-SD) measured in four livers were 0.29+/-0.07 microM and 43.1+/-1.9 pmol x min(-1) x mg(-1) respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.

    Topics: Aged; Apigenin; Biological Availability; Duodenum; Female; Flavonoids; Flavonols; Fruit; Humans; Kaempferols; Kinetics; Liver; Male; Middle Aged; Quercetin; Resveratrol; Stilbenes; Substrate Specificity; Sulfates; Sulfotransferases; Vegetables; Wine

2000