stilbenes and butein

stilbenes has been researched along with butein* in 2 studies

Other Studies

2 other study(ies) available for stilbenes and butein

ArticleYear
The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation.
    Diabetes, 2007, Volume: 56, Issue:3

    Disturbances in energy homeostasis can result in obesity and other metabolic diseases. Here we report a metabolic pathway present in normal human skeletal muscle myoblasts that is activated by the small polyphenolic molecule kaempferol (KPF). Treatment with KPF leads to an approximately 30% increase in skeletal myocyte oxygen consumption. The mechanism involves a several-fold increase in cyclic AMP (cAMP) generation and protein kinase A activation, and the effect of KPF can be mimicked via treatment with dibutyryl cAMP. Microarray and real-time PCR studies identified a set of metabolically relevant genes influenced by KPF including peroxisome proliferator-activated receptor gamma coactivator-1alpha, carnitine palmitoyl transferase-1, mitochondrial transcription factor 1, citrate synthase, and uncoupling protein-3, although KPF itself is not a direct mitochondrial uncoupler. The cAMP-responsive gene for type 2 iodothyronine deiodinase (D2), an intracellular enzyme that activates thyroid hormone (T3) for the nucleus, is approximately threefold upregulated by KPF; furthermore, the activity half-life for D2 is dramatically and selectively increased as well. The net effect is an approximately 10-fold stimulation of D2 activity as measured in cell sonicates, with a concurrent increase of approximately 2.6-fold in the rate of T3 production, which persists even 24 h after KPF has been removed from the system. The effects of KPF on D2 are independent of sirtuin activation and only weakly reproduced by other small polyphenolic molecules such as quercetin and fisetin. These data document a novel mechanism by which a xenobiotic-activated pathway can regulate metabolically important genes as well as thyroid hormone activation and thus may influence metabolic control in humans.

    Topics: Animals; Cell Line; Chalcones; Cyclic AMP; Cyclic AMP-Dependent Protein Kinase Type II; Cyclic AMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Energy Metabolism; Gene Expression Profiling; Gene Expression Regulation; Humans; Iodide Peroxidase; Iodothyronine Deiodinase Type II; Kaempferols; Myoblasts; Oxygen Consumption; Rats; Resveratrol; RNA Interference; Stilbenes; Triiodothyronine

2007
Selective separation of active inhibitors of epidermal growth factor receptor from Caragana jubata by molecularly imprinted solid-phase extraction.
    Journal of chromatography. A, 2003, Apr-04, Volume: 991, Issue:2

    A feasibility research was performed to study the possibilities of using a molecularly imprinted polymer as sorbent material in solid-phase extraction for the separation of active inhibitors of epidermal growth factor receptor (EGRF) from Caragana Jubata, a Chinese traditional Tibetan medicine. A molecularly imprinted polymer using quercetin, an active anti-EGFR inhibitor (IC50 = 15 microM), as the template and acrylamide as the functional monomer was prepared. The polymer was evaluated as a selective sorbent in molecularly imprinted solid-phase extraction. The EtOAc extract of Caragana Jubata was loaded on the polymer, and two novel active anti-EGFR inhibitors were found to be selectively retained after washing the polymer with appropriate solvent to disrupt the non-specific interactions occurring between the sample and the polymer matrix, which were identified as (E)-piceatannol (IC50 =4.9 microM) and butein (IC50 = 10 microM). The present work affords us a new potential method for selective separation of bioactive components from herb by using molecularly imprinted polymer as a solid-phase extraction adsorbent.

    Topics: Caragana; Chalcone; Chalcones; Chromatography, High Pressure Liquid; ErbB Receptors; Humans; Quercetin; Sensitivity and Specificity; Stilbenes; Tumor Cells, Cultured

2003