sepharose and curdlan

sepharose has been researched along with curdlan* in 3 studies

Other Studies

3 other study(ies) available for sepharose and curdlan

ArticleYear
Fabrication and evaluation of agarose-curdlan blend derived multifunctional nanofibrous mats for diabetic wounds.
    International journal of biological macromolecules, 2023, Apr-30, Volume: 235

    Diabetic wounds with complex pathophysiology significantly burden the wound care industry and require novel management strategies. In the present study, we hypothesized that agarose-curdlan based nanofibrous dressings could be an effective biomaterial for addressing diabetic wounds due to their inherent healing properties. Hence, agarose/curdlan/polyvinyl alcohol based nanofibrous mats loaded with ciprofloxacin (0, 1, 3, and 5 wt%) were fabricated using an electrospinning technique with water and formic acid. In vitro evaluation revealed the average diameter of the fabricated nanofibers between 115 and 146 nm with high swelling (~450-500 %) properties. They exhibited enhanced mechanical strength (7.46 ± 0.80 MPa -7.79 ± 0.007 MPa) and significant biocompatibility (~90-98 %) with L929 and NIH 3T3 mouse fibroblasts. In vitro scratch assay showed higher proliferation and migration of fibroblasts (~90-100 % wound closure) compared to electrospun PVA and control. Significant antibacterial activity was observed against Escherichia coli and Staphylococcus aureus. In vitro real-time gene expression studies with human THP-1 cell line revealed a significant downregulation of pro-inflammatory cytokines (8.64 fold decrease for TNF-α) and upregulation of anti-inflammatory cytokines (6.83 fold increase for IL-10) compared to lipopolysaccharide. In brief, the results advocate agarose-curdlan mat as a potential multifunctional, bioactive, and eco-friendly dressing for healing diabetic wounds.

    Topics: Animals; Anti-Bacterial Agents; Diabetes Mellitus; Humans; Lipopolysaccharides; Mice; Nanofibers; Polyvinyl Alcohol; Sepharose

2023
Effect of Vitamin C/Hydrocortisone Immobilization within Curdlan-Based Wound Dressings on In Vitro Cellular Response in Context of the Management of Chronic and Burn Wounds.
    International journal of molecular sciences, 2021, Oct-25, Volume: 22, Issue:21

    Bioactive dressings are usually produced using natural or synthetic polymers. Recently, special attention has been paid to β-glucans that act as immunomodulators and have pro-healing properties. The aim of this research was to use β-1,3-glucan (curdlan) as a base for the production of bioactive dressing materials (curdlan/agarose and curdlan/chitosan) that were additionally enriched with vitamin C and/or hydrocortisone to improve healing of chronic and burn wounds. The secondary goal of the study was to compressively evaluate biological properties of the biomaterials. In this work, it was shown that vitamin C/hydrocortisone-enriched biomaterials exhibited faster vitamin C release profile than hydrocortisone. Consecutive release of the drugs is a desired phenomenon since it protects wounds against accumulation of high and toxic concentrations of the bioactive molecules. Moreover, biomaterials showed gradual release of low doses of the hydrocortisone, which is beneficial during management of burn wounds with hypergranulation tissue. Among all tested variants of biomaterials, dressing materials enriched with hydrocortisone and a mixture of vitamin C/hydrocortisone showed the best therapeutic potential since they had the ability to significantly reduce MMP-2 synthesis by macrophages and increase TGF-β1 release by skin cells. Moreover, materials containing hydrocortisone and its blend with vitamin C stimulated type I collagen deposition by fibroblasts and positively affected their migration and proliferation. Results of the experiments clearly showed that the developed biomaterials enriched with bioactive agents may be promising dressings for the management of non-healing chronic and burn wounds.

    Topics: Anti-Inflammatory Agents; Antioxidants; Ascorbic Acid; Bandages; beta-Glucans; Burns; Collagen Type I; Drug Therapy, Combination; Fibroblasts; Humans; Hydrocortisone; Keratinocytes; Sepharose; Wound Healing

2021
Sulfoethylation of polysaccharides-A comparative study.
    Carbohydrate polymers, 2020, Oct-15, Volume: 246

    The heterogeneous sulfoethylation of cellulose, xylan, α-1,3-glucan, glucomannan, pullulan, curdlan, galactoglucomannan, and agarose was studied using sodium vinylsulfonate (NaVS) as reagent in presence of sodium hydroxide and iso-propanol (i-PrOH) as slurry medium. The influence of the concentration of polymer, water, and NaOH (solid or aqueous solution) on the degree of substitution (DS) was investigated. The sulfoethylation rendered the polysaccharides studied water-soluble. Sulfoethylation of heteropolysaccharides yielded products with higher DS compared to the conversion of homopolysaccharides. Structure characterization was carried out by means of

    Topics: 2-Propanol; beta-Glucans; Carbon-13 Magnetic Resonance Spectroscopy; Cellulose; Dimethyl Sulfoxide; Glucans; Mannans; Sepharose; Sodium Hydroxide; Solubility; Water; Xylans

2020