sepharose has been researched along with aniline* in 3 studies
3 other study(ies) available for sepharose and aniline
Article | Year |
---|---|
Self-gelling electroactive hydrogels based on chitosan-aniline oligomers/agarose for neural tissue engineering with on-demand drug release.
Topics: Aniline Compounds; Animals; Antineoplastic Agents, Hormonal; Cell Adhesion; Cell Proliferation; Cell Survival; Chitosan; Dexamethasone; Drug Liberation; Drug Screening Assays, Antitumor; Electric Conductivity; Electrochemical Techniques; Hydrogels; Molecular Structure; Particle Size; PC12 Cells; Rats; Sepharose; Surface Properties; Tissue Engineering; Tumor Cells, Cultured | 2019 |
Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells.
Developing a simple produces for efficient derivation of motor neurons (MNs) is essential for neural tissue engineering studies. Stem cells with high capacity for neural differentiation and scaffolds with the potential to promote motor neurons differentiation are promising candidates for neural tissue engineering. Recently, human olfactory ecto-mesenchymal stem cells (OE-MSCs), which are isolated easily from the olfactory mucosa, are considered a new hope for neuronal replacement due to their neural crest origin. Herein, we synthesized conducting hydrogels using different concentration of chitosan-g-aniline pentamer, gelatin, and agarose. The chemical structures, swelling and deswelling ratio, ionic conductivity and thermal properties of the hydrogel were characterized. Scaffolds with 10% chitosan-g-aniline pentamer/gelatin (S10) were chosen for further investigation and the potential of OE-MSCs as a new source for programming to motor neuron-like cells investigated on tissue culture plate (TCP) and conductive hydrogels. Cell differentiation was evaluated at the level of mRNA and protein synthesis and indicated that conductive hydrogels significantly increased the markers related to motor neurons including Hb-9, Islet-1 and ChAT compared to TCP. Taken together, the results suggest that OE-MSCs would be successfully differentiated into motor neuron-like cells on conductive hydrogels and would have a promising potential for treating motor neuron-related diseases. Topics: Aniline Compounds; Calcium Phosphates; Cell Differentiation; Cell Proliferation; Cell Survival; Cells, Cultured; Chitosan; Compressive Strength; Electric Conductivity; Gelatin; Humans; Hydrogels; Male; Mesenchymal Stem Cells; Motor Neurons; Olfactory Bulb; RNA, Messenger; Sepharose; Spectroscopy, Fourier Transform Infrared; Temperature; Thermogravimetry; Tissue Scaffolds | 2019 |
A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study.
In this study, synthesis of a novel biocompatible stimuli-responsive conducting hydrogel based on agarose/alginate-aniline tetramer with the capability of a tailored electrically controlled drug-release for neuroregeneration is investigated. First, aniline tetramer is synthesized and grafted onto sodium alginate. Then, this material is added to agarose as an electrical conductivity modifier to obtain Agarose/alginate-aniline tetramer hydrogel. The synthesized materials are characterized by H NMR and FTIR. The hydrogels are prepared with varying content of aniline tetramer and their swelling-deswelling and shape memory behavior is evaluated. The electroactivity and ionic conductivity of hydrogels against temperature is measured. The sample with 10% aniline tetramer (AT10) reveals the highest ionic conductivity. In MTT and SEM assays, AT10 shows the best cell viability and cell proliferation due to its highest ionic conductivity highlighting the fact that electrical stimuli cell signaling. Hydrogels also represent great potentials for passive and electro-stimulated dexamethasone release. These results demonstrate that the newly developed conducting hydrogels are promising materials for neuroregenerative medicine. Topics: Alginates; Aniline Compounds; Animals; Cell Survival; Chemistry Techniques, Synthetic; Drug Carriers; Drug Liberation; Electricity; Electrochemistry; Glucuronic Acid; Hexuronic Acids; Materials Testing; PC12 Cells; Polymerization; Rats; Sepharose | 2017 |