Page last updated: 2024-08-16

resveratrol and nad

resveratrol has been researched along with nad in 57 studies

Research

Studies (57)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's17 (29.82)29.6817
2010's34 (59.65)24.3611
2020's6 (10.53)2.80

Authors

AuthorsStudies
Kitson, KE; Kitson, TM; Moore, SA1
Bernhard, D; Crazzolara, R; Csordas, A; Kofler, R; Schwaiger, W; Tinhofer, I1
Finkel, T1
Couzin, J1
Araki, T; Milbrandt, J; Sasaki, Y1
Guarente, L; Sinclair, DA1
Akar, F; Coskun, B; Fehmi Katircioglu, S; Parlar, AI; Soylemez, S; Tulga Ulus, A1
Adalbert, R; Asress, S; Beirowski, B; Bridge, K; Coleman, MP; Conforti, L; Fang, G; Glass, JD; Huang, XP; Magni, G; Silva, A; Sorci, L; Wang, MS1
Cai, AL; Sheline, CT; Zipfel, GJ1
Chen, M; Gupta, M; Gupta, MP; Pillai, JB; Pillai, VB; Rajamohan, SB; Samant, S1
Gharavi, R; Gleichmann, M; Liu, D; Mattson, MP; Pitta, M1
Arora, M; Kaundal, RK; Kumar, A; Sharma, SS1
Chaudhary, N; Pfluger, PT1
Wu, MR; Xu, F; Zhang, HS; Zhou, HS; Zhou, Y1
Chen, K; Chen, L; Feng, Y; Jiang, H; Liu, D; Luo, C; Shen, X; Wu, J1
Wu, MR; Zhang, HS1
Akar, F; Sepici, A; Soylemez, S1
Jung, M; Schemies, J; Sippl, W; Uciechowska, U1
Baur, JA1
Chen, K; Chen, L; Feng, Y; Jiang, H; Liu, D; Shen, X; Zhou, Y; Zhu, W1
Chung, JH; Foretz, M; Kang, H; Kim, MK; McBurney, MW; Park, SJ; Um, JH; Viollet, B; Yang, S1
Fivecoat, H; Ho, L; Ling, E; Pan, Y; Pasinetti, GM; Wang, J1
Tang, BL1
Horio, Y; Houkin, K; Kuno, A; Maruyama, M; Sugino, T; Tanno, M1
Liu, W; Sang, WW; Wang, YO; Zhang, HS1
Baniahmad, A; Kyrylenko, S1
Chandra, G; Mukherjee, AB; Peng, S; Quezado, Z; Saha, A; Wei, H; Zhang, Z1
Adachi, T; Amo, T; Fukuda, K; Ishiwata, K; Katsumata, Y; Nakashima-Kamimura, N; Ohta, S; Sano, M; Shinmura, K; Suematsu, M; Tamaki, K; Wolf, AM1
Bogo, MR; Bonan, CD; Pereira, TC; Rico, EP; Rosemberg, DB; Schirmer, H; Souto, AA1
Daniels, KG; Dearmond, PD; Fitzgerald, MC; Strickland, EC; Xu, Y1
Ahmad, F; Baar, K; Beaven, MA; Brown, AL; Burgin, AB; Chung, JH; Ke, H; Kim, MK; Luo, H; Manganiello, V; Park, SJ; Philp, A; Rehmann, H; Taussig, R; Williams, T1
Auwerx, J; Houtkooper, RH; Pirinen, E1
Camacho-Pereira, J; Chini, CC; Chini, EN; Escande, C; Giri, S; Lou, Z; Matalonga, J; Nin, V1
Agarwal, B; Baur, JA; Coppari, R; Davis, JG; de Cabo, R; Duarte, FV; Gomes, AP; Hafner, A; Hubbard, BP; Ling, AJ; Martin-Montalvo, A; Moaddel, R; North, BJ; Palmeira, CM; Price, NL; Ramadori, G; Rolo, AP; Sinclair, DA; Teodoro, JS; Varamini, B; Varela, AT; Ye, L1
Allard, C; Codocedo, JF; Godoy, JA; Inestrosa, NC; Varela-Nallar, L1
Barber, PA; Chen, ZY; Cui, M; Luo, WJ; Wang, LM; Wang, XJ; Wang, YJ1
Ahmad, V; Bever, CT; Chandrasekaran, K; Judge, SI; Makar, TK; Nagalla, NK; Nimmagadda, VK; Royal, W; Russell, JW; Talat, S; Trisler, D; Vattikunta, NR1
Brugg, B; Deleglise, B; Duplus, E; Kilinc, D; Magnifico, S; Miquel, MC; Peyrin, JM; Saias, L; Viovy, JL1
Alleaume-Butaux, A; Brugg, B; Deleglise, B; Hjorth, JJ; Lassus, B; Peyrin, JM; Schneider, B; Soubeyre, V; Vignes, M; Viovy, JL1
Ayer, A; Baron, S; Bonneau, D; Chevrollier, A; Chupin, S; Desquiret-Dumas, V; Ferré, M; Gueguen, N; Henrion, D; Leman, G; Nivet-Antoine, V; Procaccio, V; Reynier, P; Vessières, E1
Bobba, N; Calliari, A; Chini, EN; Escande, C1
Bruckbauer, A; Zemel, MB1
Annese, T; Bonifati, V; Capitanio, N; Cocco, T; De Mari, M; Dell'aquila, C; Di Paola, M; Ferranini, E; Ferretta, A; Gaballo, A; Nico, B; Pacelli, C; Piccoli, C; Tanzarella, P1
Cohan, CH; Morris-Blanco, KC; Neumann, JT; Perez-Pinzon, MA; Sick, TJ1
Ding, W; Luo, Y; Shao, H; Xue, Q; Yu, B; Zhang, F; Zhang, H; Zhang, X; Zhu, H1
Albiero, M; Avogaro, A; Bova, S; Cattelan, A; Ceolotto, G; de Kreutzenberg, SV; De Martin, S; Fadini, GP; Kuppusamy, M; Semplicini, A1
Ayer, A; Baron, S; Chupin, S; Desquiret-Dumas, V; Gueguen, N; Henrion, D; Leman, G; Lenaers, G; Nivet-Antoine, V; Procaccio, V; Reynier, P; Vessières, E1
Bonkowski, MS; Sinclair, DA1
Deng, KY; Guan, XH; Hu, L; Huang, CC; Qian, YS; Wang, LF; Wang, XN; Xiao, YF; Xin, HB1
Klimova, B; Kuca, K; Novotny, M1
de Medina, P1
Cheng, K; Li, S; Song, Z; Wang, T; Zhang, H; Zhang, L1
Gong, Z; Jiao, F1
Chen, Z; Dong, H; Fang, J; Mao, S; Shi, H; Su, K; Wu, H; Xing, Y; Yu, D; Zhang, J1
Amatore, C; Huang, WH; Jiang, H; Jiao, YT; Kang, YR; Qi, YT; Wen, MY; Wu, WT; Yang, XK; Zhang, XW1
DiNicolantonio, JJ; McCarty, MF; O'Keefe, JH1
A Katouah, H; Acker, M; Al Hadi, R; Ali, M; Alserihi, R; Alyami, J; Alzahrani, E; Amirazodi, M; Amrillah, T; Andreassen, OA; Ardiccioni, C; Ask, H; Atzori, C; Ayorech, Z; Azambuja, JH; Azmi, R; Badem, S; Balci, AB; Bali, H; Baranova, NS; Barantsevich, ER; Barocci, S; Bauer, RJ; Bauermeister, JA; Bazhenova, TA; Biagetti, G; Bigdeli, F; Bonar, EE; Bouloumis, T; Bu, Y; Cai, Z; Cakiroglu, B; Canetto, SS; Cao, J; Caucci, S; Cerbo, I; Chen, C; Chen, J; Chen, Q; Chen, Y; Cheng, B; Cheng, X; Chinappi, M; Choya, A; Cicconardi, F; Cipolletta, S; Colasurdo, G; Costabile, BK; Coughlin, LN; Crippa, P; D'Agostino, M; D'Annessa, I; Daryanoosh, F; Das, R; Davey Smith, G; Davidson, BR; Davies, NM; Davis, TME; Davis, WA; de Rivas, B; Demir, D; Deng, Z; Dhanya, TM; Di Marino, D; Divya, KM; Dong, N; Drinkwater, JJ; Ekholuenetale, M; El-Bindary, AA; El-Bindary, MA; El-Desouky, MG; Elsayed, H; Ema, K; Endraswari, PD; Entilli, L; Ettl, T; Eyado, A; Fan, X; Fang, W; Farina, M; Florimbio, AR; Fowobaje, KR; Gaeini, A; Gao, XM; Gao, Y; Ghaemi, R; Ghelardi, E; Gilmutdinov, IF; Gochicoa-Rangel, L; Goncu, MT; Gözüküçük, R; Grammatikopoulos, P; Gu, Y; Guan, ZJ; Gucu, A; Guldberg, R; Gungor, O; Guo, W; Gutiérrez-Ortiz, JI; Guzmán-Boulloud, N; Guzmán-Valderrábano, C; Głuszko, A; Hama, A; Hamada, M; Han, J; Hashimoto, T; Havdahl, A; Hayashita, T; He, X; Helgeland, Ø; Hinck, AP; Hinck, CS; Holtzapple, M; Hou, Y; Howe, LD; Hu, B; Hu, H; Huang, L; Huang, Z; Hughes, AM; Hussain, G; Ibidoja, OJ; Ichikawa, D; Imber, C; Islam, MR; Iype, S; Jaber, J; Jacobs, R; Jafry, AT; Ji, L; Ji, X; Jiang, L; Jiang, Y; Jie, HFM; Jie, HM; Johansen, MP; Johansson, S; Juan, LX; Juan, W; Kahraman, N; Kallinger, I; Kang, H; Karakulova, YV; Kärmer, T; Kataoka, S; Kato, K; Kawashima, N; Kazim, AH; Khalil, MR; Kitazawa, H; Klimesova, YM; Kojima, S; Kose, M; Kostakis, ID; Koushkie Jahromi, M; Krishna, GA; Krizova, D; La Teana, A; Lan, K; Li, J; Li, JZ; Li, M; Li, R; Li, S; Li, Y; Li, Z; Liu, H; Liu, J; Liu, KG; Liu, L; Liu, Q; Liu, T; Liu, X; Lomachenko, KA; López-Fonseca, R; Ludwig, N; Luo, A; Luo, L; Luo, Y; Lupetti, A; M El-Metwaly, N; Ma, K; Maemura, R; Magnus, P; Manakin, YV; Mancia, F; Mashood, LO; Matsumoto, K; Mehrabi, A; Meier, JK; Mekonnen, Y; Mencarelli, D; Menzo, S; Mikagi, A; Mironov, VS; Misawa-Suzuki, T; Miwata, S; Mizuta, Y; Mohanan, PV; Mondal, J; Morici, P; Morita, K; Morozzo Della Rocca, B; Morris, T; Morsali, A; Morzhukhina, MV; Motta, S; Muramatsu, H; Naidu, R; Narita, A; Narita, K; Nasralla, D; Nemcokova, M; Netukova, M; Nishikawa, E; Nishio, N; Niu, X; Niu, Y; Njølstad, P; Notarstefano, V; Nugroho, MA; Nørgård, BM; Okuno, Y; Olokede, O; Ong, SP; Osailan, A; Ouyang, Z; Ozyazicioglu, AF; Pan, F; Parui, A; Paul, R; Pavoni, E; Payne, TE; Peng, X; Pérez-Padilla, R; Perta, N; Peter, SC; Pierantoni, L; Pietrowska, M; Pissanou, T; Pollok, JM; Prasetio, A; Putra, FS; Qiang, C; Qiao, L; Qutob, HMH; Raptis, DA; Razzo, BM; Reichborn-Kjennerud, T; Reichert, TE; Remigio-Luna, A; Rexha, J; Rivani, E; Rizzato, C; Romagnoli, A; Rossolini, GM; Sa, LY; Saad, RA; Sakaguchi, H; Salesi, M; Salsabilla, Z; Sanderson, E; Sanderson, P; Savitha, DP; Schulz, D; Seker, IB; Selvaganapathy, PR; Sha, D; Shah, SF; Shaikhomar, OA; Sharma, D; Shi, C; Shi, P; Shrotri, A; Sidiq, DH; Simonov, SV; Singh, AK; Song, C; Song, T; Spanier, G; Spoerl, S; Staropoli, A; Statsenko, ME; Steinhauer, S; Stosic, A; Studeny, P; Sugaya, T; Sun, S; Sun, X; Sunbul, SA; Supandi, AR; Suzuki, K; Suzuki, Y; Szczepański, MJ; Takahashi, Y; Taniguchi, R; Tao, Y; Tesli, M; Thirión-Romero, I; Tong, D; Trucchi, E; Tsuchido, Y; Turchetti, C; Turkina, SV; Turner, AW; Uldbjerg, N; Vinale, F; Wakamatsu, M; Walton, MA; Wang, C; Wang, Q; Wang, W; Wang, Y; Wang, Z; Wehberg, S; Wei, ZL; Wen, B; Whiteside, TL; Whittingham, MS; Widodo, ADW; Widłak, P; Wright, AI; Wu, H; Wu, Y; Wu, YL; Xiang, LG; Xiao, G; Xie, B; Xie, L; Xin, H; Xiong, J; Xiong, X; Xu, C; Xu, S; Yagubskii, EB; Yakushev, IA; Yang, H; Yang, J; Yao, J; Yao, ZX; Ye, J; Yerneni, SS; Yirgu, A; Yoshida, N; Yoshida, T; Young, SD; Yu, DN; Yuksel, A; Zac, J; Zac, S; Zarifkar, AH; Zhai, Y; Zhang, F; Zhang, H; Zhang, JW; Zhang, L; Zhang, Q; Zhang, X; Zhang, Y; Zhao, D; Zhao, J; Zhao, M; Zheng, D; Zheng, J; Zhou, G; Zhou, H; Zhu, P; Zhu, T; Zhu, Y; Zimmerman, MA; Zou, X1

Reviews

11 review(s) available for resveratrol and nad

ArticleYear
Metabolic benefits from Sirt1 and Sirt1 activators.
    Current opinion in clinical nutrition and metabolic care, 2009, Volume: 12, Issue:4

    Topics: AMP-Activated Protein Kinases; Animals; Caloric Restriction; Diabetes Mellitus, Type 2; Diet; Disease Models, Animal; Energy Metabolism; Humans; Mice; Mice, Transgenic; NAD; Resveratrol; Sirtuin 1; Sirtuins; Stilbenes; Trans-Activators; Transcription, Genetic

2009
NAD(+) -dependent histone deacetylases (sirtuins) as novel therapeutic targets.
    Medicinal research reviews, 2010, Volume: 30, Issue:6

    Topics: Animals; Epigenesis, Genetic; HIV Infections; Humans; Inhibitory Concentration 50; Models, Chemical; NAD; Neoplasms; Niacinamide; Protein Binding; Resveratrol; Signal Transduction; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 2; Sirtuins; Stilbenes

2010
Biochemical effects of SIRT1 activators.
    Biochimica et biophysica acta, 2010, Volume: 1804, Issue:8

    Topics: Animals; Cardiotonic Agents; Energy Metabolism; Enzyme Activation; Heterocyclic Compounds, 4 or More Rings; Humans; Insulin Resistance; Learning; Longevity; Memory; Mice; Models, Biological; NAD; Neoplasms; Niacinamide; O-Acetyl-ADP-Ribose; Resveratrol; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 1; Stilbenes

2010
The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer's disease neuropathology.
    Biochimica et biophysica acta, 2010, Volume: 1804, Issue:8

    Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Amyloidosis; Animals; Caloric Restriction; Humans; Longevity; NAD; Resveratrol; Sirtuin 1; Stilbenes

2010
Sirtuin family: a link to metabolic signaling and senescence.
    Current medicinal chemistry, 2010, Volume: 17, Issue:26

    Topics: Aging; Anti-Inflammatory Agents, Non-Steroidal; Humans; NAD; Resveratrol; Signal Transduction; Sirtuins; Stilbenes

2010
Sirtuins as regulators of metabolism and healthspan.
    Nature reviews. Molecular cell biology, 2012, Mar-07, Volume: 13, Issue:4

    Topics: Aging; Animals; Energy Metabolism; Glucose; Histones; Homeostasis; Humans; Insulin; Insulin Secretion; Lipid Metabolism; Longevity; Multigene Family; NAD; Phylogeny; Protein Processing, Post-Translational; Resveratrol; Sirtuins; Stilbenes

2012
Slowing ageing by design: the rise of NAD
    Nature reviews. Molecular cell biology, 2016, Volume: 17, Issue:11

    Topics: Aging; Allosteric Regulation; Animals; Clinical Trials as Topic; Enzyme Activators; Humans; NAD; Resveratrol; Sirtuins; Stilbenes

2016
Anti-Aging Drugs - Prospect of Longer Life?
    Current medicinal chemistry, 2018, Volume: 25, Issue:17

    Topics: Animals; Humans; Longevity; Metformin; NAD; Quality of Life; Resveratrol; Sirolimus; Stilbenes

2018
The Beneficial Roles of SIRT1 in Neuroinflammation-Related Diseases.
    Oxidative medicine and cellular longevity, 2020, Volume: 2020

    Topics: Animals; Brain Injuries, Traumatic; Humans; NAD; Neurodegenerative Diseases; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Resveratrol; Sirtuin 1; Toll-Like Receptors

2020
Nutraceutical activation of Sirt1: a review.
    Open heart, 2022, Volume: 9, Issue:2

    Topics: AMP-Activated Protein Kinases; Dietary Supplements; Humans; NAD; Resveratrol; Sirtuin 1

2022
Impact of dexamethasone and tocilizumab on hematological parameters in COVID-19 patients with chronic disease.
    Medicina clinica (English ed.), 2022, Dec-23, Volume: 159, Issue:12

    Topics: Acetaminophen; Acetylcarnitine; Acetylcholinesterase; Acids; Acinetobacter baumannii; Acinetobacter Infections; Adaptation, Psychological; Adolescent; Adsorption; Adult; Aged; Alcohol Drinking; Alzheimer Disease; Amikacin; Ammonia; Anaerobiosis; Animals; Anorexia; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Anxiety; Aptamers, Nucleotide; Asthenia; Attention Deficit Disorder with Hyperactivity; Bacterial Proteins; Beryllium; beta-Lactamases; Biofuels; Biomass; Biosensing Techniques; Bismuth; Blister; Body Mass Index; Body Surface Area; Boronic Acids; Brain; Breast Neoplasms; Butyrylcholinesterase; Cannabis; Carbapenems; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Carboxylic Acids; Carcinoma, Hepatocellular; Cardiovascular Diseases; Carnitine; Case-Control Studies; Catalysis; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Child; China; Cholinesterase Inhibitors; Clarithromycin; Clostridioides; Clostridioides difficile; Clostridium Infections; Cohort Studies; Colistin; Colitis; Colon; Coloring Agents; Coronary Artery Bypass; Creatinine; Crystalloid Solutions; Cytokines; Depression; Dextran Sulfate; Dextrans; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Diarrhea; Dietary Supplements; Diphenhydramine; Disease Models, Animal; Disease Outbreaks; Double-Blind Method; Doxorubicin; Drosophila; Drug Tapering; Dysbiosis; Electrons; Escherichia coli; Extracellular Vesicles; Fatigue; Female; Fermentation; gamma-Cyclodextrins; Gastrointestinal Microbiome; Glucose; Graft Survival; Graft vs Host Disease; Head and Neck Neoplasms; Heart Arrest, Induced; Hematopoietic Stem Cell Transplantation; High-Intensity Interval Training; Hippocampus; Humans; Hydrogen-Ion Concentration; Hypertension; Incidence; Interferon-gamma; Italy; Kinetics; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Lactoferrin; Larva; Length of Stay; Lignin; Liver; Liver Neoplasms; Liver Transplantation; Living Donors; Low Back Pain; Lung; Lung Volume Measurements; Macrophages; Male; Melphalan; Men; Mendelian Randomization Analysis; Meropenem; Methane; Mice; Mice, Inbred C57BL; Microbial Sensitivity Tests; Mitochondrial Proteins; Molecular Docking Simulation; Molecular Structure; Mothers; Motivation; Mycoplasma; Mycoplasma hominis; Mycoplasma Infections; NAD; Nanocomposites; Nanoparticles; Nanotubes, Carbon; Naproxen; Neovascularization, Pathologic; Neurons; Nitrates; Nucleolin; Opuntia; Paratyphoid Fever; Phenotype; Phosphatidylinositol 3-Kinases; Phytochemicals; Plant Extracts; Pregnancy; Prevalence; Prospective Studies; Proto-Oncogene Proteins c-akt; Pulmonary Disease, Chronic Obstructive; Rats; Rats, Wistar; Resveratrol; Retrospective Studies; Rifampin; Risk Factors; RNA, Messenger; Selenium; Sleep; Social Behavior; Soil; Soil Pollutants; Squamous Cell Carcinoma of Head and Neck; Staphylococcus aureus; Structure-Activity Relationship; Suicidal Ideation; Suicide; Superoxide Dismutase-1; Surveys and Questionnaires; Swimming; Syndrome; Tannins; Temperature; Transforming Growth Factor beta; Transplantation Conditioning; Treatment Outcome; Triple Negative Breast Neoplasms; Troponin T; Tumor Microenvironment; United Kingdom; Ureaplasma; Ureaplasma urealyticum; Urinary Tract Infections; Viscum; Waste Disposal Facilities; Wastewater; Water; Water Pollutants, Chemical; Wolfiporia; Young Adult

2022

Trials

1 trial(s) available for resveratrol and nad

ArticleYear
Impact of dexamethasone and tocilizumab on hematological parameters in COVID-19 patients with chronic disease.
    Medicina clinica (English ed.), 2022, Dec-23, Volume: 159, Issue:12

    Topics: Acetaminophen; Acetylcarnitine; Acetylcholinesterase; Acids; Acinetobacter baumannii; Acinetobacter Infections; Adaptation, Psychological; Adolescent; Adsorption; Adult; Aged; Alcohol Drinking; Alzheimer Disease; Amikacin; Ammonia; Anaerobiosis; Animals; Anorexia; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Anxiety; Aptamers, Nucleotide; Asthenia; Attention Deficit Disorder with Hyperactivity; Bacterial Proteins; Beryllium; beta-Lactamases; Biofuels; Biomass; Biosensing Techniques; Bismuth; Blister; Body Mass Index; Body Surface Area; Boronic Acids; Brain; Breast Neoplasms; Butyrylcholinesterase; Cannabis; Carbapenems; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Carboxylic Acids; Carcinoma, Hepatocellular; Cardiovascular Diseases; Carnitine; Case-Control Studies; Catalysis; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Child; China; Cholinesterase Inhibitors; Clarithromycin; Clostridioides; Clostridioides difficile; Clostridium Infections; Cohort Studies; Colistin; Colitis; Colon; Coloring Agents; Coronary Artery Bypass; Creatinine; Crystalloid Solutions; Cytokines; Depression; Dextran Sulfate; Dextrans; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Diarrhea; Dietary Supplements; Diphenhydramine; Disease Models, Animal; Disease Outbreaks; Double-Blind Method; Doxorubicin; Drosophila; Drug Tapering; Dysbiosis; Electrons; Escherichia coli; Extracellular Vesicles; Fatigue; Female; Fermentation; gamma-Cyclodextrins; Gastrointestinal Microbiome; Glucose; Graft Survival; Graft vs Host Disease; Head and Neck Neoplasms; Heart Arrest, Induced; Hematopoietic Stem Cell Transplantation; High-Intensity Interval Training; Hippocampus; Humans; Hydrogen-Ion Concentration; Hypertension; Incidence; Interferon-gamma; Italy; Kinetics; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Lactoferrin; Larva; Length of Stay; Lignin; Liver; Liver Neoplasms; Liver Transplantation; Living Donors; Low Back Pain; Lung; Lung Volume Measurements; Macrophages; Male; Melphalan; Men; Mendelian Randomization Analysis; Meropenem; Methane; Mice; Mice, Inbred C57BL; Microbial Sensitivity Tests; Mitochondrial Proteins; Molecular Docking Simulation; Molecular Structure; Mothers; Motivation; Mycoplasma; Mycoplasma hominis; Mycoplasma Infections; NAD; Nanocomposites; Nanoparticles; Nanotubes, Carbon; Naproxen; Neovascularization, Pathologic; Neurons; Nitrates; Nucleolin; Opuntia; Paratyphoid Fever; Phenotype; Phosphatidylinositol 3-Kinases; Phytochemicals; Plant Extracts; Pregnancy; Prevalence; Prospective Studies; Proto-Oncogene Proteins c-akt; Pulmonary Disease, Chronic Obstructive; Rats; Rats, Wistar; Resveratrol; Retrospective Studies; Rifampin; Risk Factors; RNA, Messenger; Selenium; Sleep; Social Behavior; Soil; Soil Pollutants; Squamous Cell Carcinoma of Head and Neck; Staphylococcus aureus; Structure-Activity Relationship; Suicidal Ideation; Suicide; Superoxide Dismutase-1; Surveys and Questionnaires; Swimming; Syndrome; Tannins; Temperature; Transforming Growth Factor beta; Transplantation Conditioning; Treatment Outcome; Triple Negative Breast Neoplasms; Troponin T; Tumor Microenvironment; United Kingdom; Ureaplasma; Ureaplasma urealyticum; Urinary Tract Infections; Viscum; Waste Disposal Facilities; Wastewater; Water; Water Pollutants, Chemical; Wolfiporia; Young Adult

2022

Other Studies

46 other study(ies) available for resveratrol and nad

ArticleYear
Interaction of sheep liver cytosolic aldehyde dehydrogenase with quercetin, resveratrol and diethylstilbestrol.
    Chemico-biological interactions, 2001, Jan-30, Volume: 130-132, Issue:1-3

    Topics: Aldehyde Dehydrogenase; Animals; Binding Sites; Catalytic Domain; Cytosol; Diethylstilbestrol; Enzyme Activation; Enzyme Inhibitors; In Vitro Techniques; Kinetics; Liver; Models, Molecular; NAD; Protein Conformation; Quercetin; Resveratrol; Sheep; Stilbenes

2001
Enhanced MTT-reducing activity under growth inhibition by resveratrol in CEM-C7H2 lymphocytic leukemia cells.
    Cancer letters, 2003, Jun-10, Volume: 195, Issue:2

    Topics: Antioxidants; Apoptosis; Artifacts; Cell Division; Colorimetry; Dose-Response Relationship, Drug; Electron Transport; Formazans; Growth Inhibitors; Histocytochemistry; Humans; Indicators and Reagents; Leukemia, T-Cell; Mitochondria; NAD; NADP; Organ Specificity; Oxidation-Reduction; Resveratrol; Stilbenes; Subcellular Fractions; T-Lymphocytes; Tetrazolium Salts; Thiazoles; Tumor Cells, Cultured

2003
Ageing: a toast to long life.
    Nature, 2003, Sep-11, Volume: 425, Issue:6954

    Topics: Acetylation; Animals; Caloric Restriction; Flavonoids; Histone Deacetylases; Humans; Longevity; NAD; Phenols; Polymers; Polyphenols; Resveratrol; Saccharomyces cerevisiae; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 1; Sirtuin 2; Sirtuins; Stilbenes; Wine

2003
Scientific community. Aging research's family feud.
    Science (New York, N.Y.), 2004, Feb-27, Volume: 303, Issue:5662

    Topics: Aging; Animals; Australia; Biotechnology; Caloric Restriction; Histone Deacetylases; History, 20th Century; History, 21st Century; Humans; Longevity; NAD; Niacinamide; Nicotinamidase; Resveratrol; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 2; Sirtuins; Stilbenes; United States

2004
Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration.
    Science (New York, N.Y.), 2004, Aug-13, Volume: 305, Issue:5686

    Topics: 3T3 Cells; Animals; Axons; Axotomy; Benzamides; Cell Line; Cell Nucleus; Cell Survival; Cells, Cultured; Ganglia, Spinal; Humans; Lentivirus; Mice; Mutation; NAD; Naphthols; Nerve Tissue Proteins; Neuroprotective Agents; Nicotinamide-Nucleotide Adenylyltransferase; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Resveratrol; RNA, Small Interfering; Sirtuin 1; Sirtuins; Stilbenes; Ubiquitin-Protein Ligases; Vincristine; Wallerian Degeneration

2004
Unlocking the secrets of longevity genes.
    Scientific American, 2006, Volume: 294, Issue:3

    Topics: Aging; Animals; Diet; DNA, Ribosomal; Energy Intake; Energy Metabolism; Humans; Insulin; Insulin-Like Growth Factor I; Longevity; Mutation; NAD; Repetitive Sequences, Nucleic Acid; Resveratrol; Saccharomyces cerevisiae; Sirtuins; Stilbenes; Stress, Physiological

2006
Effect of resveratrol on nitrate tolerance in isolated human internal mammary artery.
    Journal of cardiovascular pharmacology, 2006, Volume: 47, Issue:3

    Topics: Catalase; Drug Tolerance; Endothelium, Vascular; Humans; Hydrogen Peroxide; In Vitro Techniques; Male; Mammary Arteries; Middle Aged; NAD; Nitroglycerin; Resveratrol; Stilbenes; Superoxide Dismutase; Superoxides; Vasodilation

2006
NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration.
    Cell death and differentiation, 2007, Volume: 14, Issue:1

    Topics: Animals; Axons; Mice; Mice, Inbred C57BL; Mice, Transgenic; NAD; Nerve Tissue Proteins; Nicotinamide-Nucleotide Adenylyltransferase; Point Mutation; Resveratrol; Sciatic Neuropathy; Stilbenes; Wallerian Degeneration

2007
Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway.
    The European journal of neuroscience, 2006, Volume: 24, Issue:8

    Topics: Aldehydes; Animals; Antioxidants; Brain Ischemia; Cells, Cultured; Flavonoids; Flavonols; Ion Channels; Male; Mitochondria; NAD; Naphthalenes; Neural Conduction; Neurotoxicity Syndromes; Neurotoxins; Niacinamide; Pyridines; Rats; Rats, Long-Evans; Resveratrol; Signal Transduction; Sirtuins; Stilbenes; Transcriptional Activation; Zinc

2006
Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression.
    American journal of physiology. Heart and circulatory physiology, 2008, Volume: 294, Issue:3

    Topics: Animals; Antioxidants; Antithyroid Agents; Blotting, Western; Cardiomegaly; Cell Size; Cells, Cultured; Densitometry; Diet; Enzyme Activation; Fibrosis; Fructose; Male; Mice; Mice, Transgenic; Myocardium; Myosin Heavy Chains; NAD; Nutritional Physiological Phenomena; Propylthiouracil; Resveratrol; RNA; Sirtuin 1; Sirtuins; Stilbenes; Transfection

2008
Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons.
    Neuromolecular medicine, 2009, Volume: 11, Issue:1

    Topics: Animals; Antioxidants; Brain Ischemia; Cell Death; Cells, Cultured; Male; Mice; Mice, Inbred C57BL; NAD; Neurons; Neuroprotective Agents; Neurotoxins; Niacinamide; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Resveratrol; Sirtuin 1; Sirtuins; Stilbenes

2009
Neuroprotective potential of combination of resveratrol and 4-amino 1,8 naphthalimide in experimental diabetic neuropathy: focus on functional, sensorimotor and biochemical changes.
    Free radical research, 2009, Volume: 43, Issue:4

    Topics: 1-Naphthylamine; Animals; Antioxidants; Diabetic Neuropathies; Male; Malondialdehyde; NAD; Naphthalimides; Neural Conduction; Neuralgia; Neuroprotective Agents; Oxidative Stress; Pain Measurement; Peroxynitrous Acid; Poly Adenosine Diphosphate Ribose; Quinolones; Rats; Rats, Sprague-Dawley; Resveratrol; Sciatic Nerve; Stilbenes

2009
Resveratrol inhibited Tat-induced HIV-1 LTR transactivation via NAD(+)-dependent SIRT1 activity.
    Life sciences, 2009, Sep-23, Volume: 85, Issue:13-14

    Topics: Antineoplastic Agents, Phytogenic; Blotting, Western; HeLa Cells; HIV Long Terminal Repeat; HIV-1; Humans; NAD; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; Sirtuin 1; Sirtuins; Stilbenes; tat Gene Products, Human Immunodeficiency Virus; Transcriptional Activation; Virus Replication

2009
A fluorometric assay of SIRT1 deacetylation activity through quantification of nicotinamide adenine dinucleotide.
    Analytical biochemistry, 2009, Dec-15, Volume: 395, Issue:2

    Topics: Catechin; Coumarins; Fluorescent Dyes; NAD; Peptides; Resveratrol; Sirtuin 1; Spectrometry, Fluorescence; Stilbenes

2009
SIRT1 regulates Tat-induced HIV-1 transactivation through activating AMP-activated protein kinase.
    Virus research, 2009, Volume: 146, Issue:1-2

    Topics: Acetyl-CoA Carboxylase; AMP-Activated Protein Kinases; Enzyme Activators; Enzyme Inhibitors; Gene Expression Regulation, Viral; Gene Knockdown Techniques; HIV-1; Host-Pathogen Interactions; Humans; NAD; Niacinamide; Resveratrol; RNA, Small Interfering; Sirtuin 1; Stilbenes; tat Gene Products, Human Immunodeficiency Virus; Transcriptional Activation

2009
Resveratrol supplementation gender independently improves endothelial reactivity and suppresses superoxide production in healthy rats.
    Cardiovascular drugs and therapy, 2009, Volume: 23, Issue:6

    Topics: Acetylcholine; Angiotensin II; Animals; Antioxidants; Endothelium, Vascular; Female; Male; NAD; NADP; Nitric Oxide; Phenylephrine; Rats; Resveratrol; Sex Factors; Stilbenes; Superoxides; Vasoconstriction; Vasoconstrictor Agents; Vasodilation; Wine

2009
Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1.
    Journal of inorganic biochemistry, 2010, Volume: 104, Issue:2

    Topics: Acetylation; Animals; Binding Sites; Binding, Competitive; Catalysis; Chelating Agents; Edetic Acid; Humans; Kinetics; Mutation; NAD; Protein Binding; Resveratrol; Sirtuin 1; Spectrometry, Fluorescence; Stilbenes; Substrate Specificity; Zinc; Zinc Fingers

2010
AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol.
    Diabetes, 2010, Volume: 59, Issue:3

    Topics: AMP-Activated Protein Kinases; Animals; Cells, Cultured; Drug Resistance; Enzyme Inhibitors; Fibroblasts; Glucose Intolerance; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Mitochondria; Muscle, Skeletal; NAD; Resveratrol; Sirtuin 1; Stilbenes; Weight Loss

2010
Resveratrol is neuroprotective because it is not a direct activator of Sirt1-A hypothesis.
    Brain research bulletin, 2010, Mar-16, Volume: 81, Issue:4-5

    Topics: AMP-Activated Protein Kinases; Animals; Brain; Cell Death; Models, Neurological; NAD; Nerve Degeneration; Neurons; Neuroprotective Agents; Resveratrol; Sirtuin 1; Spinal Cord; Stilbenes

2010
Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells.
    FEBS letters, 2010, Jul-02, Volume: 584, Issue:13

    Topics: Animals; Cell Differentiation; Cytoplasm; Immunoblotting; Immunohistochemistry; NAD; Nerve Growth Factors; Neurites; PC12 Cells; Rats; Resveratrol; Sirtuin 1; Stilbenes

2010
Nicotinamide phosphoribosyltransferase/sirtuin 1 pathway is involved in human immunodeficiency virus type 1 Tat-mediated long terminal repeat transactivation.
    Journal of cellular biochemistry, 2010, Aug-15, Volume: 110, Issue:6

    Topics: Antineoplastic Agents, Phytogenic; beta-Galactosidase; CD4 Antigens; Dose-Response Relationship, Drug; HeLa Cells; HIV Long Terminal Repeat; Humans; Immunoblotting; NAD; Nicotinamide Phosphoribosyltransferase; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Signal Transduction; Sirtuin 1; Stilbenes; tat Gene Products, Human Immunodeficiency Virus; Transcriptional Activation

2010
Disruption of adaptive energy metabolism and elevated ribosomal p-S6K1 levels contribute to INCL pathogenesis: partial rescue by resveratrol.
    Human molecular genetics, 2011, Mar-15, Volume: 20, Issue:6

    Topics: Animals; Cells, Cultured; Energy Metabolism; Fibroblasts; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NAD; Neuronal Ceroid-Lipofuscinoses; Oxidative Stress; Phosphorylation; Resveratrol; Ribosomal Protein S6 Kinases, 70-kDa; Ribosomal Protein S6 Kinases, 90-kDa; Ribosomes; Stilbenes; Thiolester Hydrolases; Up-Regulation

2011
Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain.
    Circulation research, 2011, Aug-05, Volume: 109, Issue:4

    Topics: Acetylation; Animals; Antioxidants; Blotting, Western; Caloric Restriction; Cells, Cultured; Disease Models, Animal; Electron Transport Chain Complex Proteins; Electron Transport Complex III; Humans; Hydrogen Peroxide; Mitochondria, Heart; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Myocardial Reperfusion Injury; Myocytes, Cardiac; NAD; NADH Dehydrogenase; Niacinamide; Oxidative Stress; Proteomics; Rats; Rats, Inbred F344; Resveratrol; Sirtuins; Stilbenes

2011
Modulatory effect of resveratrol on SIRT1, SIRT3, SIRT4, PGC1α and NAMPT gene expression profiles in wild-type adult zebrafish liver.
    Molecular biology reports, 2012, Volume: 39, Issue:3

    Topics: Analysis of Variance; Animals; DNA Primers; Gene Expression Profiling; Gene Expression Regulation; Liver; NAD; Nicotinamide Phosphoribosyltransferase; Real-Time Polymerase Chain Reaction; Resveratrol; Sirtuin 1; Sirtuin 3; Stilbenes; Transcription Factors; Zebrafish

2012
Thermodynamic analysis of protein-ligand interactions in complex biological mixtures using a shotgun proteomics approach.
    Journal of proteome research, 2011, Nov-04, Volume: 10, Issue:11

    Topics: Algorithms; Amino Acid Sequence; Antioxidants; Glutamate Dehydrogenase; Hydrogen Peroxide; Methionine; Molecular Sequence Data; NAD; Oxidants; Oxidation-Reduction; Peptide Fragments; Protein Binding; Proteome; Resveratrol; Saccharomyces cerevisiae Proteins; Stilbenes; Tandem Mass Spectrometry; Thermodynamics

2011
Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.
    Cell, 2012, Feb-03, Volume: 148, Issue:3

    Topics: 3',5'-Cyclic-AMP Phosphodiesterases; Adipose Tissue, White; Aging; AMP-Activated Protein Kinase Kinases; Animals; Caloric Restriction; Cyclic Nucleotide Phosphodiesterases, Type 4; Diet; Glucose Intolerance; Guanine Nucleotide Exchange Factors; Mice; Models, Molecular; Muscle, Skeletal; NAD; Obesity; Protein Kinases; Resveratrol; Rolipram; Ryanodine Receptor Calcium Release Channel; Signal Transduction; Sirtuin 1; Stilbenes

2012
Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase.
    The Journal of biological chemistry, 2012, Jul-06, Volume: 287, Issue:28

    Topics: Acrylamides; Adaptor Proteins, Signal Transducing; Amino Acid Sequence; AMP-Activated Protein Kinases; Animals; Blotting, Western; Carbazoles; Cell Line, Tumor; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Enzyme Activation; HEK293 Cells; Hep G2 Cells; Humans; Mice; Mice, Knockout; Models, Biological; Mutation; NAD; Niacinamide; Phosphorylation; Piperidines; Resveratrol; RNA Interference; Signal Transduction; Sirtuin 1; Stilbenes

2012
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.
    Cell metabolism, 2012, May-02, Volume: 15, Issue:5

    Topics: AMP-Activated Protein Kinase Kinases; Animals; Cells, Cultured; Enzyme Activation; Hepatocytes; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; Muscle, Skeletal; NAD; Protein Kinases; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes

2012
SIRT1 regulates dendritic development in hippocampal neurons.
    PloS one, 2012, Volume: 7, Issue:10

    Topics: Amyloid beta-Peptides; Animals; Cell Survival; Dendrites; Hippocampus; Immunoblotting; NAD; Neurons; Rats; Rats, Sprague-Dawley; Resveratrol; Sirtuin 1; Stilbenes

2012
A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia.
    The European journal of neuroscience, 2013, Volume: 37, Issue:10

    Topics: Age Factors; AMP-Activated Protein Kinases; Animals; Cerebral Cortex; Diet; Energy Metabolism; Enzyme Inhibitors; Infarction, Middle Cerebral Artery; Male; NAD; Neurons; Neuroprotective Agents; Rats; Rats, Wistar; Resveratrol; RNA, Small Interfering; Signal Transduction; Sirtuin 1; Stilbenes; Stroke

2013
Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets.
    Journal of immunology (Baltimore, Md. : 1950), 2013, May-01, Volume: 190, Issue:9

    Topics: Animals; Apoptosis; Axons; Brain-Derived Neurotrophic Factor; Demyelinating Diseases; Encephalomyelitis, Autoimmune, Experimental; Female; Inflammation; Mice; Mice, Inbred C57BL; Myelin-Oligodendrocyte Glycoprotein; NAD; Neurons; Neuroprotective Agents; Resveratrol; Sirtuin 1; Spinal Cord; Stilbenes

2013
NAD+ acts on mitochondrial SirT3 to prevent axonal caspase activation and axonal degeneration.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2013, Volume: 27, Issue:12

    Topics: Animals; Apoptosis; Axons; Caspases; Mice; Microfluidics; NAD; Resveratrol; Sirtuin 3; Stilbenes

2013
Synapto-protective drugs evaluation in reconstructed neuronal network.
    PloS one, 2013, Volume: 8, Issue:8

    Topics: Amides; Amino Acid Chloromethyl Ketones; Animals; Axons; Dendrites; Embryo, Mammalian; Enzyme Inhibitors; Mice; Microfluidics; Microscopy, Fluorescence; Models, Neurological; NAD; Nerve Net; Neurodegenerative Diseases; Primary Cell Culture; Pyridines; Resveratrol; Stilbenes; Synapses

2013
Resveratrol induces a mitochondrial complex I-dependent increase in NADH oxidation responsible for sirtuin activation in liver cells.
    The Journal of biological chemistry, 2013, Dec-20, Volume: 288, Issue:51

    Topics: Animals; Electron Transport Complex I; Enzyme Activation; Hep G2 Cells; Hepatocytes; Humans; Mice; Mice, Inbred C57BL; Mitochondria, Liver; NAD; Oxidation-Reduction; Resveratrol; Sirtuin 3; Stilbenes

2013
Resveratrol delays Wallerian degeneration in a NAD(+) and DBC1 dependent manner.
    Experimental neurology, 2014, Volume: 251

    Topics: Analysis of Variance; Animals; Animals, Newborn; Antioxidants; Cells, Cultured; Disease Models, Animal; Ganglia, Spinal; Humans; In Vitro Techniques; Mice; NAD; Neurofilament Proteins; Neurons; Resveratrol; RNA-Binding Proteins; Sciatic Nerve; Sirtuin 1; Stilbenes; Time Factors; Transfection; Wallerian Degeneration

2014
Synergistic effects of polyphenols and methylxanthines with Leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes.
    PloS one, 2014, Volume: 9, Issue:2

    Topics: 3T3-L1 Cells; Adipocytes; AMP-Activated Protein Kinases; Animals; Caffeic Acids; Chlorogenic Acid; Ellagic Acid; Fatty Acids; Humans; Leucine; Mice; Muscle Cells; NAD; Oxidation-Reduction; Phosphodiesterase Inhibitors; Polyphenols; Protein Kinase Inhibitors; Resveratrol; Sirtuin 1; Stilbenes; Valerates; Xanthines

2014
Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease.
    Biochimica et biophysica acta, 2014, Volume: 1842, Issue:7

    Topics: Adenosine Triphosphate; AMP-Activated Protein Kinases; Cells, Cultured; Female; Fibroblasts; Genetic Predisposition to Disease; Humans; Middle Aged; Mitochondria; NAD; Oxidative Stress; Oxygen Consumption; Parkinson Disease; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Resveratrol; Sirtuin 1; Stilbenes; Transcription Factors; Ubiquitin-Protein Ligases

2014
Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2014, Volume: 34, Issue:6

    Topics: Animals; Cells, Cultured; Cerebral Cortex; Cytokines; Enzyme Inhibitors; Ischemic Preconditioning; Mitochondria; NAD; Nicotinamide Phosphoribosyltransferase; Protein Kinase C-epsilon; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes

2014
Spinal SIRT1 activation attenuates neuropathic pain in mice.
    PloS one, 2014, Volume: 9, Issue:6

    Topics: Animals; Down-Regulation; Hyperalgesia; Male; Mice; Mice, Inbred Strains; NAD; Neuralgia; Niacinamide; Resveratrol; Sirtuin 1; Spinal Cord; Stilbenes

2014
NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis.
    Vascular pharmacology, 2015, Volume: 70

    Topics: AMP-Activated Protein Kinases; Animals; Apoptosis; Binding Sites; Caspase 3; DNA-Binding Proteins; Enzyme Activation; Forkhead Transcription Factors; Glucose; Heat Shock Transcription Factors; Isolated Heart Preparation; Male; Myocardial Reperfusion Injury; Myocytes, Cardiac; NAD; Nerve Tissue Proteins; Promoter Regions, Genetic; Rats, Inbred WKY; Resveratrol; Signal Transduction; Sirtuin 1; Sirtuins; Stilbenes; Time Factors; Transcription Factors

2015
Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice.
    PloS one, 2015, Volume: 10, Issue:12

    Topics: Age Factors; Animals; Binding Sites; Brain; Cell Respiration; Cells, Cultured; Dose-Response Relationship, Drug; Electron Transport Complex I; Gene Expression Regulation, Enzymologic; Humans; Male; Mice; Mitochondria; Models, Molecular; Molecular Docking Simulation; NAD; Oxidative Stress; Resveratrol; Stilbenes

2015
Inhibition of NAMPT aggravates high fat diet-induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway.
    Lipids in health and disease, 2017, Apr-27, Volume: 16, Issue:1

    Topics: Acrylamides; AMP-Activated Protein Kinases; Animals; Carbazoles; Cell Line; Cytokines; Diet, High-Fat; Enzyme Inhibitors; Gene Expression Regulation; Hep G2 Cells; Hepatocytes; Humans; Liver; Male; Mice; Mice, Inbred C57BL; NAD; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Non-alcoholic Fatty Liver Disease; Oleic Acid; Piperidines; Resveratrol; Signal Transduction; Sirtuin 1; Sterol Regulatory Element Binding Protein 1; Stilbenes

2017
Deciphering the metabolic secret of longevity through the analysis of metabolic response to stress on long-lived species.
    Medical hypotheses, 2019, Volume: 122

    Topics: Aging; Animals; Homeostasis; Humans; Longevity; Metabolomics; Mice; Models, Theoretical; Mole Rats; NAD; Neoplasms; Oxidative Stress; Rats; Resveratrol; Species Specificity; Spermidine; Stress, Physiological

2019
Effects of Early Resveratrol Intervention on Skeletal Muscle Mitochondrial Function and Redox Status in Neonatal Piglets with or without Intrauterine Growth Retardation.
    Oxidative medicine and cellular longevity, 2020, Volume: 2020

    Topics: Animals; Animals, Newborn; DNA, Mitochondrial; Electron Transport; Energy Metabolism; Fetal Growth Retardation; Gene Expression Regulation; Glycogen; Male; Metabolome; Mitochondria; Muscle, Skeletal; NAD; Organelle Biogenesis; Oxidation-Reduction; Resveratrol; Swine

2020
A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 150

    Topics: 14-3-3 Proteins; Aminoglycosides; Animals; Anti-Bacterial Agents; Cochlea; Hearing Loss; Kanamycin; Mice; NAD; Niacinamide; Ototoxicity; Pyridinium Compounds; Reactive Oxygen Species; Resveratrol; Sirtuin 1

2022
Dual-channel nanoelectrochemical sensor for monitoring intracellular ROS and NADH kinetic variations of their concentrations.
    Biosensors & bioelectronics, 2023, Feb-15, Volume: 222

    Topics: Biosensing Techniques; Kinetics; Metal Nanoparticles; NAD; Oxidation-Reduction; Platinum; Reactive Oxygen Species; Resveratrol

2023