Page last updated: 2024-08-18

pyrroles and zd 6474

pyrroles has been researched along with zd 6474 in 41 studies

Research

Studies (41)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's17 (41.46)29.6817
2010's24 (58.54)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Rosen, LS1
Shiotsu, Y1
du Manoir, J; Francia, G; Hicklin, DJ; Kerbel, RS; Ma, L; Rak, J; Viloria-Petit, A1
Ardizzoni, A; Franciosi, V; Tiseo, M1
Ikezoe, T; Koeffler, HP; Nishioka, C; Taguchi, H; Taguchi, T; Yang, Y; Zhu, WG1
Herbst, RS1
Ardizzoni, A; Tiseo, M1
Cabebe, E; Wakelee, H1
Armand, JP; Mir, O; Ropert, S1
Giordano, S; Petrelli, A1
Lee, CB; Socinski, MA1
Buhl, R; Fischer, B1
Gettinger, S1
Horn, L; Sandler, AB1
Dziadziusko, R; Fennell, D; Gridelli, C; Lacombe, D; Pallis, AG; Serfass, L; van Meerbeeck, JP; Welch, J1
Sherman, SI1
Galle, PR; Gockel, I; Heidel, F; Lang, H; Lyros, O; Moehler, M; Mueller, A; Schimanski, CC1
Moretti, S; Puxeddu, E; Romagnoli, S; Voce, P1
Kats-Ugurlu, G; Kiemeney, LA; Leenders, WP; Mulders, PF; Old, LJ; Oosterwijk, E; Oosterwijk-Wakka, JC1
Batey, MA; de Brito, LR; Hall, AG; Irving, JA; Jackson, G; Leung, HY; Maitland, H; Newell, DR; Squires, MS; Zhao, Y1
Claes, A; Hamans, BC; Heerschap, A; Jeuken, JW; Leenders, WP; Navis, AC; Wesseling, P1
Alves, MM; de Groot, JW; Hofstra, RM; Links, TP; Osinga, J; Plukker, JT; Verbeek, HH1
Arango, BA; Cohen, EE; Perez, CA; Raez, LE; Santos, ES1
Fassnacht, M; Kreissl, MC; Schott, M; Spitzweg, C; Willhauck, MJ1
Chevreau, C; Cottura, E; Garrido-Stowhas, I; Sibaud, V1
Döme, B; Török, S1
Aide, N; Bardet, S; Crouzeix, G; Michels, JJ; Sevin, E; Vaur, D1
Bottai, G; Santarpia, L1
Andriamanana, I; Duretz, B; Gana, I; Hulin, A1
Robert, C; Sibaud, V1
Askeland, RW; Cyr, AR; Gillum, MP; Spanheimer, PM; Weigel, RJ; Woodfield, GW1
Baudin, E; Borson-Chazot, F; Hescot, S; Lombès, M1
Baudin, E; Bonichon, F; Borget, I; Brassard, M; Chougnet, CN; Claude-Desroches, M; de la Fouchardière, C; Do Cao, C; Giraudet, AL; Leboulleux, S; Massicotte, MH; Schlumberger, M1
Chen, Y; Hong, S; Luo, S; Tan, M; Wang, S; Zhang, L1
Gemma, A; Miyanaga, A1
Covell, LL; Ganti, AK1
Bandaru, S; Dunna, NR; Girdhar, A; Hussain, T; Kandula, V; Nayarisseri, A; Pudutha, A1
Alexandre, J; Arrondeau, J; Blanchet, B; Boudou-Rouquette, P; Bretagne, M; Cabanes, L; Cessot, A; Chahwakilian, A; Coriat, R; Goldwasser, F; Huillard, O; Orvoen, G; Thomas-Schoemann, A; Tlemsani, C1
Chang, H; Kim, HS; Kim, JW; Lee, JS; Moon, SU; Sung, JH1
Bonsignore, R; Gentile, C; Lauria, A; Martorana, A1
Carillio, G; Costanzo, R; Daniele, G; Manzo, A; Montanino, A; Morabito, A; Normanno, N; Perrone, F; Piccirillo, MC; Rocco, G; Sandomenico, C1

Reviews

27 review(s) available for pyrroles and zd 6474

ArticleYear
Inhibitors of the vascular endothelial growth factor receptor.
    Hematology/oncology clinics of North America, 2002, Volume: 16, Issue:5

    Topics: Angiogenesis Inhibitors; Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Bevacizumab; Clinical Trials as Topic; Colorectal Neoplasms; Drug Design; Drug Screening Assays, Antitumor; Endothelial Growth Factors; Enzyme Inhibitors; Humans; Indoles; Intercellular Signaling Peptides and Proteins; Lymphokines; Neoplasm Proteins; Neoplasms; Neovascularization, Pathologic; Phthalazines; Piperidines; Pyridines; Pyrroles; Quinazolines; Recombinant Proteins; RNA, Catalytic; Treatment Failure; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2; Vascular Endothelial Growth Factors

2002
[Current screening for molecular target therapy of cancer].
    Gan to kagaku ryoho. Cancer & chemotherapy, 2003, Volume: 30, Issue:12

    Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Drug Delivery Systems; Drug Screening Assays, Antitumor; Gefitinib; Heat-Shock Proteins; Humans; Imatinib Mesylate; Indoles; Lactones; Mice; Neoplasms; Phthalazines; Piperazines; Piperidines; Pyrazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sunitinib

2003
Multi-target inhibitors in non-small cell lung cancer (NSCLC).
    Annals of oncology : official journal of the European Society for Medical Oncology, 2006, Volume: 17 Suppl 2

    Topics: Angiogenesis Inhibitors; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Carcinoma, Non-Small-Cell Lung; ErbB Receptors; Humans; Indoles; Lung Neoplasms; Medical Oncology; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Sorafenib; Sunitinib

2006
Toxicities of antiangiogenic therapy in non-small-cell lung cancer.
    Clinical lung cancer, 2006, Volume: 8 Suppl 1

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Humans; Indoles; Lung Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Pyridines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Vascular Endothelial Growth Factors

2006
Combination of target agents: challenges and opportunities.
    Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2007, Volume: 2, Issue:5 Suppl

    Topics: Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Drug Resistance, Neoplasm; Humans; Indoles; Lung Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Pyridines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sorafenib; Sunitinib

2007
Role of anti-angiogenesis agents in treating NSCLC: focus on bevacizumab and VEGFR tyrosine kinase inhibitors.
    Current treatment options in oncology, 2007, Volume: 8, Issue:1

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Non-Small-Cell Lung; Clinical Trials as Topic; Enzyme Inhibitors; Humans; Indoles; Lung Neoplasms; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Piperidines; Pyridines; Pyrroles; Quinazolines; Signal Transduction; Sorafenib; Sunitinib; Treatment Outcome; Vascular Endothelial Growth Factor Receptor-1

2007
[Oral drugs inhibiting the VEGF pathway].
    Bulletin du cancer, 2007, Volume: 94 Spec No

    Topics: Administration, Oral; Angiogenesis Inhibitors; Animals; Asthenia; Axitinib; Benzenesulfonates; Humans; Hypertension; Imidazoles; Indazoles; Indoles; Neoplasms; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Phthalazines; Piperidines; Proteinuria; Pyridines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sunitinib; Vascular Endothelial Growth Factor A

2007
From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage.
    Current medicinal chemistry, 2008, Volume: 15, Issue:5

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Benzenesulfonates; Bevacizumab; Cetuximab; Clinical Trials as Topic; Enzyme Inhibitors; Erlotinib Hydrochloride; Gefitinib; Humans; Imatinib Mesylate; Indoles; Lapatinib; Neoplasms; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sorafenib; Sunitinib; Trastuzumab

2008
Vascular endothelial growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer: a review of recent clinical trials.
    Reviews on recent clinical trials, 2007, Volume: 2, Issue:2

    Topics: Angiogenesis Inhibitors; Antineoplastic Agents; Benzenesulfonates; Carcinoma, Non-Small-Cell Lung; Clinical Trials as Topic; Humans; Indoles; Neovascularization, Pathologic; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phthalazines; Piperidines; Protein-Tyrosine Kinases; Pyridines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sunitinib; Treatment Outcome

2007
[Lung cancer].
    Medizinische Klinik (Munich, Germany : 1983), 2008, May-15, Volume: 103, Issue:5

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Non-Small-Cell Lung; Chemotherapy, Adjuvant; Combined Modality Therapy; Drugs, Investigational; Erlotinib Hydrochloride; Humans; Indoles; Lung Neoplasms; Mass Screening; Neoplasm Staging; Niacinamide; Phenylurea Compounds; Piperidines; Pneumonectomy; Pyridines; Pyrroles; Quinazolines; Radiotherapy, Adjuvant; Randomized Controlled Trials as Topic; Sorafenib; Sunitinib

2008
Targeted therapy in advanced non-small-cell lung cancer.
    Seminars in respiratory and critical care medicine, 2008, Volume: 29, Issue:3

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Non-Small-Cell Lung; Drug Delivery Systems; Epidermal Growth Factor; Erlotinib Hydrochloride; Humans; Indoles; Lung Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Signal Transduction; Sorafenib; Sunitinib; Treatment Outcome; Vascular Endothelial Growth Factor A

2008
Emerging data with antiangiogenic therapies in early and advanced non-small-cell lung cancer.
    Clinical lung cancer, 2009, Volume: 10 Suppl 1

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Benzenesulfonates; Bevacizumab; Carcinoma, Non-Small-Cell Lung; Clinical Trials as Topic; Humans; Indoles; Lung Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sunitinib; Thalidomide; Vascular Endothelial Growth Factor A

2009
Targeted therapies in the treatment of advanced/metastatic NSCLC.
    European journal of cancer (Oxford, England : 1990), 2009, Volume: 45, Issue:14

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Non-Small-Cell Lung; Cetuximab; Erlotinib Hydrochloride; Gefitinib; Humans; Indoles; Lung Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Pyridines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Treatment Outcome

2009
Tyrosine kinase inhibitors and the thyroid.
    Best practice & research. Clinical endocrinology & metabolism, 2009, Volume: 23, Issue:6

    Topics: Axitinib; Benzenesulfonates; Clinical Trials as Topic; Gefitinib; Humans; Imidazoles; Indazoles; Indoles; Niacinamide; Oligonucleotides; Pharmaceutical Preparations; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins B-raf; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thyroid Gland; Thyroid Neoplasms

2009
Targeted molecular therapies in thyroid carcinoma.
    Arquivos brasileiros de endocrinologia e metabologia, 2009, Volume: 53, Issue:9

    Topics: Antineoplastic Agents; Axitinib; Benzenesulfonates; Carcinoma, Medullary; Carcinoma, Papillary; Humans; Imidazoles; Indazoles; Indoles; Niacinamide; Oligonucleotides; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thyroid Neoplasms

2009
Novel molecular targeted therapies for refractory thyroid cancer.
    Head & neck, 2012, Volume: 34, Issue:5

    Topics: Angiogenesis Inhibitors; Anilides; Antineoplastic Agents; Axitinib; Benzamides; Benzenesulfonates; Benzoquinones; Bibenzyls; Boronic Acids; Bortezomib; Depsipeptides; ErbB Receptors; Gefitinib; Histone Deacetylase Inhibitors; HSP90 Heat-Shock Proteins; Humans; Hydroxamic Acids; Imatinib Mesylate; Imidazoles; Indazoles; Indoles; Lactams, Macrocyclic; Lenalidomide; Niacinamide; Oligonucleotides; Phenylurea Compounds; Piperazines; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-kit; Pyrazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Quinolines; Receptor Protein-Tyrosine Kinases; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thalidomide; Thyroid Neoplasms; Valproic Acid; Vorinostat

2012
[Dermatologic side effects induced by new angiogenesis inhibitors].
    Bulletin du cancer, 2011, Volume: 98, Issue:10

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal, Humanized; Benzenesulfonates; Bevacizumab; Drug Eruptions; Humans; Indazoles; Indoles; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Piperidines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Skin; Sorafenib; Sulfonamides; Sunitinib

2011
[Possibilities for inhibiting tumor-induced angiogenesis: results with multi-target tyrosine kinase inhibitors].
    Magyar onkologia, 2012, Volume: 56, Issue:1

    Topics: Angiogenesis Inhibitors; Animals; Axitinib; Benzenesulfonates; Humans; Imidazoles; Indazoles; Indoles; Neoplasms; Neovascularization, Pathologic; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phthalazines; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Receptors, Fibroblast Growth Factor; Receptors, Platelet-Derived Growth Factor; Receptors, Vascular Endothelial Growth Factor; Signal Transduction; Sorafenib; Sulfonamides; Sunitinib

2012
Inhibition of RET activated pathways: novel strategies for therapeutic intervention in human cancers.
    Current pharmaceutical design, 2013, Volume: 19, Issue:5

    Topics: Animals; Antineoplastic Agents; Drug Design; Humans; Indoles; Molecular Targeted Therapy; Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Proto-Oncogene Mas; Proto-Oncogene Proteins c-ret; Pyrroles; Quinazolines; Signal Transduction; Sorafenib; Sunitinib

2013
[Pigmentary disorders induced by anticancer agents. Part II: targeted therapies].
    Annales de dermatologie et de venereologie, 2013, Volume: 140, Issue:4

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Cetuximab; Dasatinib; ErbB Receptors; Humans; Imatinib Mesylate; Indazoles; Indoles; Ipilimumab; Niacinamide; Phenylurea Compounds; Pigmentation Disorders; Piperazines; Piperidines; Programmed Cell Death 1 Receptor; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thiazoles

2013
[Targeted therapies, prognostic and predictive factors in endocrine oncology].
    Annales d'endocrinologie, 2013, Volume: 74 Suppl 1

    Topics: Antineoplastic Agents; Carcinoma, Neuroendocrine; Clinical Trials, Phase III as Topic; Disease-Free Survival; Endocrine Gland Neoplasms; Everolimus; Humans; Indoles; Molecular Targeted Therapy; Neuroendocrine Tumors; Niacinamide; Pancreatic Neoplasms; Phenylurea Compounds; Piperidines; Prognosis; Pyrroles; Quinazolines; Sirolimus; Sorafenib; Sunitinib; Thyroid Neoplasms; Treatment Outcome

2013
Efficacy and safety of angiogenesis inhibitors in advanced non-small cell lung cancer: a systematic review and meta-analysis.
    Journal of cancer research and clinical oncology, 2015, Volume: 141, Issue:5

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Bevacizumab; Carcinoma, Non-Small-Cell Lung; Disease-Free Survival; Hemorrhage; Humans; Indazoles; Indoles; Lung Neoplasms; Niacinamide; Odds Ratio; Phenylurea Compounds; Piperidines; Pyrimidines; Pyrroles; Quinazolines; Ramucirumab; Randomized Controlled Trials as Topic; Receptors, Vascular Endothelial Growth Factor; Signal Transduction; Sorafenib; Sulfonamides; Sunitinib; Thrombocytopenia; Treatment Outcome; Vascular Endothelial Growth Factor A

2015
[Anti-angiogenesis and molecular targeted therapies].
    Nihon rinsho. Japanese journal of clinical medicine, 2015, Volume: 73, Issue:8

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Humans; Indoles; Molecular Targeted Therapy; Neoplasms; Niacinamide; Oligonucleotides; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Vascular Endothelial Growth Factor A

2015
Treatment of advanced thyroid cancer: role of molecularly targeted therapies.
    Targeted oncology, 2015, Volume: 10, Issue:3

    Topics: Anilides; Antineoplastic Agents; Axitinib; Carcinoma, Neuroendocrine; DNA Mutational Analysis; Drug Approval; Humans; Imidazoles; Indazoles; Indoles; MAP Kinase Signaling System; Molecular Targeted Therapy; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Piperidines; Proto-Oncogene Proteins c-ret; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Quinolines; Sorafenib; Sulfonamides; Sunitinib; Thyroid Neoplasms; United States; United States Food and Drug Administration; Vascular Endothelial Growth Factor A

2015
[Tyrosine kinase inhibiting the VEGF pathway and elderly people: Tolerance, pre-treatment assessment and side effects management].
    Bulletin du cancer, 2016, Volume: 103, Issue:3

    Topics: Aged; Aged, 80 and over; Angiogenesis Inhibitors; Axitinib; Fatigue; Humans; Imidazoles; Indazoles; Indoles; Kidney; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sunitinib

2016
Kinase Inhibitors in Multitargeted Cancer Therapy.
    Current medicinal chemistry, 2017, Volume: 24, Issue:16

    Topics: Anilides; Crizotinib; Humans; Imatinib Mesylate; Imidazoles; Indoles; Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyrazoles; Pyridazines; Pyridines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sorafenib; Sunitinib

2017
Angiogenesis Inhibitors in NSCLC.
    International journal of molecular sciences, 2017, Sep-21, Volume: 18, Issue:10

    Topics: Adenocarcinoma; Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Carcinoma, Non-Small-Cell Lung; Clinical Trials, Phase III as Topic; Disease-Free Survival; Docetaxel; Humans; Indoles; Lung Neoplasms; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Piperidines; Pyrroles; Quinazolines; Ramucirumab; Sorafenib; Sunitinib; Taxoids

2017

Other Studies

14 other study(ies) available for pyrroles and zd 6474

ArticleYear
In vitro procoagulant activity induced in endothelial cells by chemotherapy and antiangiogenic drug combinations: modulation by lower-dose chemotherapy.
    Cancer research, 2005, Jun-15, Volume: 65, Issue:12

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Blood Coagulation; Cells, Cultured; Cisplatin; Deoxycytidine; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Synergism; Endothelial Cells; Gemcitabine; Humans; Indoles; Oxindoles; Piperidines; Propionates; Pyrroles; Quinazolines; Thromboplastin

2005
ZD6474 induces growth arrest and apoptosis of GIST-T1 cells, which is enhanced by concomitant use of sunitinib.
    Cancer science, 2006, Volume: 97, Issue:12

    Topics: Adaptor Proteins, Signal Transducing; Antineoplastic Agents; Apoptosis; Cell Cycle Proteins; Cell Proliferation; Drug Therapy, Combination; Gastrointestinal Stromal Tumors; Humans; Indoles; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Phosphoproteins; Phosphorylation; Piperidines; Protein Kinases; Proto-Oncogene Proteins c-akt; Pyrroles; Quinazolines; Reverse Transcriptase Polymerase Chain Reaction; Ribosomal Protein S6 Kinases, 70-kDa; STAT3 Transcription Factor; Sunitinib; TOR Serine-Threonine Kinases; Tumor Cells, Cultured

2006
Analysis of anti-proliferative and chemosensitizing effects of sunitinib on human esophagogastric cancer cells: Synergistic interaction with vandetanib via inhibition of multi-receptor tyrosine kinase pathways.
    International journal of cancer, 2010, Sep-01, Volume: 127, Issue:5

    Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Cell Proliferation; Cells, Cultured; Drug Interactions; Drug Synergism; Drug Therapy, Combination; Endothelium, Vascular; ErbB Receptors; Esophageal Neoplasms; Flow Cytometry; Humans; Indoles; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrroles; Quinazolines; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Stomach Neoplasms; Sunitinib; Umbilical Veins; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2; Vascular Endothelial Growth Factor Receptor-3

2010
Effect of tyrosine kinase inhibitor treatment of renal cell carcinoma on the accumulation of carbonic anhydrase IX-specific chimeric monoclonal antibody cG250.
    BJU international, 2011, Volume: 107, Issue:1

    Topics: Animals; Antibodies, Monoclonal; Antineoplastic Agents; Benzenesulfonates; Carbonic Anhydrases; Carcinoma, Renal Cell; Drug Synergism; Female; Humans; Immunohistochemistry; Indoles; Kidney Neoplasms; Mice; Neoplasm Transplantation; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrroles; Quinazolines; Sorafenib; Sunitinib

2011
Comparative pre-clinical evaluation of receptor tyrosine kinase inhibitors for the treatment of multiple myeloma.
    Leukemia research, 2011, Volume: 35, Issue:9

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Drug Evaluation, Preclinical; Humans; Indoles; Mice; Mice, Inbred BALB C; Mice, Nude; Multiple Myeloma; Phthalazines; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sunitinib; Xenograft Model Antitumor Assays

2011
Effects of targeting the VEGF and PDGF pathways in diffuse orthotopic glioma models.
    The Journal of pathology, 2011, Volume: 223, Issue:5

    Topics: Angiogenesis Inhibitors; Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Blood-Brain Barrier; Brain Neoplasms; Glioma; Humans; Indoles; Magnetic Resonance Imaging; Mice; Mice, Nude; Neovascularization, Pathologic; Piperidines; Pyrroles; Quinazolines; Receptor, Platelet-Derived Growth Factor beta; Signal Transduction; Sunitinib; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays

2011
The effects of four different tyrosine kinase inhibitors on medullary and papillary thyroid cancer cells.
    The Journal of clinical endocrinology and metabolism, 2011, Volume: 96, Issue:6

    Topics: Anilides; Axitinib; Blotting, Western; Cell Line, Tumor; Cell Proliferation; Humans; Imidazoles; Indazoles; Indoles; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-ret; Pyridines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Sunitinib; Thyroid Gland; Tumor Cells, Cultured

2011
[New therapeutic options for advanced thyroid cancer].
    Deutsche medizinische Wochenschrift (1946), 2011, Volume: 136, Issue:22

    Topics: Antineoplastic Agents; Benzenesulfonates; Humans; Indoles; Niacinamide; Phenylurea Compounds; Piperidines; Pyridines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thyroid Neoplasms

2011
Unusual short-term complete response to two regimens of cytotoxic chemotherapy in a patient with poorly differentiated thyroid carcinoma.
    The Journal of clinical endocrinology and metabolism, 2012, Volume: 97, Issue:9

    Topics: Antibiotics, Antineoplastic; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Cisplatin; Combined Modality Therapy; Doxorubicin; Fatal Outcome; Female; Fluorodeoxyglucose F18; Humans; Indoles; Iodine Radioisotopes; Lung Neoplasms; Middle Aged; Niacinamide; Paclitaxel; Phenylurea Compounds; Piperidines; Pyridines; Pyrroles; Quinazolines; Radiopharmaceuticals; Sorafenib; Sunitinib; Thyroid Neoplasms; Thyroidectomy; Tomography, X-Ray Computed

2012
Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2013, May-01, Volume: 926

    Topics: Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Chromatography, Liquid; Dasatinib; Erlotinib Hydrochloride; Humans; Imatinib Mesylate; Indoles; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Pyrazines; Pyrimidines; Pyrroles; Quinazolines; Reproducibility of Results; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles

2013
Distinct pathways regulated by RET and estrogen receptor in luminal breast cancer demonstrate the biological basis for combination therapy.
    Annals of surgery, 2014, Volume: 259, Issue:4

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Biomarkers, Tumor; Blotting, Western; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Estrogen Receptor alpha; Female; Flow Cytometry; Humans; Indoles; Mammary Neoplasms, Experimental; MAP Kinase Signaling System; MCF-7 Cells; Mice; Piperidines; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-ret; Pyrroles; Quinazolines; Random Allocation; Signal Transduction; Sunitinib; Tamoxifen; Transcription Factor AP-2

2014
Tyrosine kinase inhibitor treatments in patients with metastatic thyroid carcinomas: a retrospective study of the TUTHYREF network.
    European journal of endocrinology, 2014, Volume: 170, Issue:4

    Topics: Adenocarcinoma; Adenocarcinoma, Follicular; Adenoma, Oxyphilic; Adult; Aged; Antineoplastic Agents; Bone Neoplasms; Carcinoma; Carcinoma, Neuroendocrine; Carcinoma, Papillary; Disease-Free Survival; Female; Humans; Indoles; Liver Neoplasms; Lung Neoplasms; Lymphatic Metastasis; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Piperidines; Pleural Neoplasms; Protein-Tyrosine Kinases; Pyrroles; Quinazolines; Retrospective Studies; Sorafenib; Sunitinib; Thyroid Cancer, Papillary; Thyroid Neoplasms; Treatment Outcome

2014
High Affinity Pharmacological Profiling of Dual Inhibitors Targeting RET and VEGFR2 in Inhibition of Kinase and Angiogeneis Events in Medullary Thyroid Carcinoma.
    Asian Pacific journal of cancer prevention : APJCP, 2015, Volume: 16, Issue:16

    Topics: Angiogenesis Inhibitors; Anilides; Carcinoma, Neuroendocrine; Databases, Chemical; Drug Discovery; Humans; Imidazoles; Indoles; Molecular Docking Simulation; Molecular Structure; Niacinamide; Oligonucleotides; Piperidines; Protein Binding; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-ret; Pyrazoles; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sunitinib; Thyroid Neoplasms; Vascular Endothelial Growth Factor Receptor-2

2015
EGF Induced RET Inhibitor Resistance in CCDC6-RET Lung Cancer Cells.
    Yonsei medical journal, 2017, Volume: 58, Issue:1

    Topics: Adenocarcinoma; Cell Line, Tumor; Cetuximab; Drug Resistance, Neoplasm; Epidermal Growth Factor; ErbB Receptors; fms-Like Tyrosine Kinase 3; Gefitinib; Gene Rearrangement; Hepatocyte Growth Factor; Humans; Indoles; Lung Neoplasms; MAP Kinase Signaling System; Mutation; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Mas; Proto-Oncogene Proteins c-ret; Pyrroles; Quinazolines; RNA, Small Interfering; Signal Transduction; Sorafenib; Sunitinib

2017