naloxone and carvone

naloxone has been researched along with carvone* in 1 studies

Other Studies

1 other study(ies) available for naloxone and carvone

ArticleYear
Antinociceptive activity of (-)-carvone: evidence of association with decreased peripheral nerve excitability.
    Biological & pharmaceutical bulletin, 2008, Volume: 31, Issue:5

    (-)-Carvone is a monoterpene ketone that is the main active component of Mentha plant species like Mentha spicata. This study aimed to investigate the antinociceptive activity of (-)-carvone using different experimental models of pain and to investigate whether such effects might be involved in the nervous excitability elicited by others monoterpenes. In the acetic acid-induced writhing test, we observed that (-)-carvone-treated mice exhibited a significant decrease in the number of writhes when 100 and 200 mg/kg was administered. It was also demonstrated that (-)-carvone inhibited the licking response of the injected paw when 100 and 200 mg/kg was administered (i.p.) to mice in the first and second phases of the formalin test. Since naloxone (5 mg/kg, s.c.), an opioid antagonist, showed no influence on the antinociceptive action of (-)-carvone (100 mg/kg), this suggested nonparticipation of the opioid system in the modulation of pain induced by (-)-carvone. Such results were unlikely to be provoked by motor abnormality, since (-)-carvone-treated mice did not exhibit any performance alteration on the Rota-rod apparatus. Because the antinociceptive effects could be associated with neuronal excitability inhibition, we performed the single sucrose gap technique and observed that (-)-carvone (10 mM) was able to reduce the excitability of the isolated sciatic nerve through a diminution of the compound action potential amplitude by about 50% from control recordings. We conclude that (-)-carvone has antinociceptive activity associated with decreased peripheral nerve excitability.

    Topics: Acetates; Action Potentials; Analgesics; Analgesics, Opioid; Animals; Cyclohexane Monoterpenes; Diazepam; Electrophysiology; Formaldehyde; Hypnotics and Sedatives; Male; Mice; Monoterpenes; Morphine; Naloxone; Narcotic Antagonists; Pain Measurement; Peripheral Nerves; Postural Balance; Stereoisomerism; Sucrose

2008
chemdatabank.com