naloxone and atosiban

naloxone has been researched along with atosiban* in 4 studies

Other Studies

4 other study(ies) available for naloxone and atosiban

ArticleYear
Medial prefrontal cortex oxytocin-opioid receptors interaction in spatial memory processing in rats.
    Physiology & behavior, 2019, 10-01, Volume: 209

    Medial prefrontal cortex (mPFC), a forebrain structure, is involved in many brain functions such as learning and memory. In the present study, the effect of intra-mPFC microinjection of oxytocin, atosiban, morphine and naloxone was investigated on memory processing. Two guide cannulas were implanted into the right and left sides of the mPFC in ketamine and xylazine-anesthetized rats. To assess spatial memory function MWM test was performed by four training sessions of four trials. On day 5, a probe test was conducted after drugs microinjection. Significant differences were observed in learning activities during training days before microinjection of drugs. Intra-mPFC microinjections of oxytocin (5 and 10 ng/site) significantly increased memory related activities. This effect of oxytocin was inhibited by prior microinjection of atosiban (20 ng/site). On the other hand, morphine microinjection at doses of 5 and 10 μg/site into the mPFC significantly decreased memory related activities that were prevented by prior administration of naloxone (5 μg/site) and oxytocin (5 and 10 ng/site). In addition, intra-mPFC combined microinjections of low doses of oxytocin (2.5 ng/site) and naloxone (1 μg/site) improved memory function. By increasing the doses of oxytocin (5 ng/site) and naloxone (5 μg/site), a more documented improving effect was observed. These results showed that memory performance was impaired by activation of mPFC opioid receptors in rats. In addition, oxytocin in the mPFC improved memory function and prevented memory impairment-induced by morphine. Moreover, an interaction between oxytocin and opioid systems was also appeared in the present study.

    Topics: Animals; Hormone Antagonists; Male; Maze Learning; Microinjections; Naloxone; Narcotic Antagonists; Oxytocin; Prefrontal Cortex; Psychomotor Performance; Rats; Rats, Wistar; Receptors, Opioid; Receptors, Oxytocin; Spatial Memory; Swimming; Vasotocin

2019
Brief Isolation Changes Nociceptive Behaviors and Compromises Drug Tests in Mice.
    Pain practice : the official journal of World Institute of Pain, 2016, Volume: 16, Issue:6

    Herding with a litter is known to comfort rodents, whereas isolation and grouping with noncagemates provoke stress. The effects of stress induced by isolation and grouping with noncagemates on pain responses, and their underlying mechanisms remain elusive. We assessed the effect of isolation, a common condition during behavioral tests, and of grouping on defecation and pain behaviors of mice. Fecal pellets were counted 2 hours after exposure to the test chamber. It is significantly more in the isolated mice than in the grouped mice. Hindpaw withdrawal threshold and withdrawal latency were adopted as the indicatives of mechanical and thermal pain sensitivities, respectively. Interestingly, isolated mice showed higher pain thresholds than mice grouping with cagemates, and even those with noncagemates, indicating analgesic effects. Such effects were reduced by intrathecal injection of 0.01 mg/kg of naloxone (opioid receptor antagonist), atosiban (oxytocin and vasopressin receptor antagonist), and ketanserin (5-HT receptor antagonist). Intraperitoneal delivery of 1 mg/kg of naloxone and atosiban, but not ketanserin, also alleviated the isolation-induced analgesic effects. In contrast, these drugs at the same dose had no significant effect on the mice grouping with cagemates. In addition, the effect of morphine on thermal pain was more robust in the mice grouping with cagemates than in the isolated mice. These data demonstrated that brief isolation caused analgesia, mediated by endogenous opioidergic, oxytocinergic, and serotonergic pathways. These results indicate that isolation during pain behavioral tests can affect pain responses and the efficacy of drugs; thus, nociception tests should be conducted in grouping.

    Topics: Analgesics; Analgesics, Opioid; Animals; Behavior, Animal; Drug Evaluation, Preclinical; Feces; Hot Temperature; Ketanserin; Male; Mice; Mice, Inbred C57BL; Morphine; Naloxone; Narcotic Antagonists; Nociceptive Pain; Pain Measurement; Pain Threshold; Physical Stimulation; Serotonin Antagonists; Social Isolation; Vasotocin

2016
Reversal of peripheral nerve injury-induced hypersensitivity in the postpartum period: role of spinal oxytocin.
    Anesthesiology, 2013, Volume: 118, Issue:1

    Physical injury, including surgery, can result in chronic pain; yet chronic pain following childbirth, including cesarean delivery in women, is rare. The mechanisms involved in this protection by pregnancy or delivery have not been explored.. We examined the effect of pregnancy and delivery on hypersensitivity to mechanical stimuli of the rat hindpaw induced by peripheral nerve injury (spinal nerve ligation) and after intrathecal oxytocin, atosiban, and naloxone. Additionally, oxytocin concentration in lumbar spinal cerebrospinal fluid was determined.. Spinal nerve ligation performed at mid-pregnancy resulted in similar hypersensitivity to nonpregnant controls, but hypersensitivity partially resolved beginning after delivery. Removal of pups after delivery prevented this partial resolution. Cerebrospinal fluid concentrations of oxytocin were greater in normal postpartum rats prior to weaning. To examine the effect of injury at the time of delivery rather than during pregnancy, spinal nerve ligation was performed within 24 h of delivery. This resulted in acute hypersensitivity that partially resolved over the next 2-3 weeks. Weaning of pups resulted only in a temporary return of hypersensitivity. Intrathecal oxytocin effectively reversed the hypersensitivity following separation of the pups. Postpartum resolution of hypersensitivity was transiently abolished by intrathecal injection of the oxytocin receptor antagonist, atosiban.. These results suggest that the postpartum period rather than pregnancy protects against chronic hypersensitivity from peripheral nerve injury and that this protection may reflect sustained oxytocin signaling in the central nervous system during this period.

    Topics: Animals; Behavior, Animal; Disease Models, Animal; Female; Hormone Antagonists; Hypersensitivity; Injections, Spinal; Naloxone; Narcotic Antagonists; Oxytocics; Oxytocin; Peripheral Nerve Injuries; Physical Stimulation; Postpartum Period; Rats; Rats, Sprague-Dawley; Spinal Nerves; Vasotocin; Weaning

2013
Involvement of oxytocin in spinal antinociception in rats with inflammation.
    Brain research, 2003, Sep-05, Volume: 983, Issue:1-2

    The present study was conducted on rats with inflammation induced by subcutaneous injection of carrageenan into the left hindpaw. Intrathecal administration of oxytocin produced dose-dependent increases in the hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation in rats with inflammation. The antinociceptive effect of oxytocin was blocked by intrathecal administration of atosiban, a selective oxytocin antagonist, indicating that oxytocin receptor mediates oxytocin-induced antinociception in the spinal cord. The oxytocin-induced antinociceptive effect was attenuated by intrathecal administration of the opioid antagonist naloxone, suggesting an involvement of the endogenous opioid system in oxytocin-induced antinociception in the spinal cord of rats with inflammation. Furthermore, the antinociceptive effect of oxytocin was attenuated by intrathecal injections of the mu-receptor antagonist beta-funaltrexamine and the kappa-receptor antagonist nor-binaltorphimine, but not by the delta-receptor antagonist naltrindole, illustrating that mu- and kappa-receptors, but not delta-receptor, are involved in oxytocin-induced antinociception in the spinal cord of rats with inflammation. Moreover, intrathecal administration of atosiban alone induced a hyperalgesia in rats with inflammation, indicating that endogenous oxytocin is involved in the transmission and regulation of nociceptive information in the spinal cord of rats with inflammation. The present study showed that both exogenous and endogenous oxytocin displayed antinociception in the spinal cord in rats with inflammation, and mu- and kappa-receptors were involved in oxytocin-induced antinociception.

    Topics: Analgesics; Animals; Carrageenan; Hot Temperature; Inflammation; Injections, Spinal; Male; Naloxone; Naltrexone; Narcotic Antagonists; Oxytocin; Pain; Pain Measurement; Physical Stimulation; Rats; Rats, Wistar; Spinal Cord; Vasotocin

2003
chemdatabank.com