maysin and flavone

maysin has been researched along with flavone* in 2 studies

Other Studies

2 other study(ies) available for maysin and flavone

ArticleYear
Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize.
    BMC plant biology, 2012, Nov-01, Volume: 12

    The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3'-hydroxylase (ZmF3'H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3'h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3'h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors.. In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3'-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3'H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3'h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3'h1 gene is a direct target of P1. Highlighting the significance of the Zmf3'h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks.. Our results show that the Zmf3'h1 gene participates in the biosynthesis of phlobaphenes and agronomically important 3-deoxyflavonoid compounds under the regulatory control of P1.

    Topics: Animals; Anthocyanins; Benzopyrans; Binding Sites; Cytochrome P-450 Enzyme System; Flavones; Flavonoids; Gene Expression Regulation, Plant; Genes, Plant; Genotype; Glucosides; Larva; Moths; Phenotype; Plant Proteins; Promoter Regions, Genetic; Protein Binding; Silk; Transcription, Genetic; Zea mays

2012
A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis.
    Plant molecular biology, 2003, Volume: 52, Issue:1

    The maize p1 locus coincides with a major QTL (quantitative trait locus) determining levels of maysin, a C-glycosyl flavone that deters feeding by corn ear-worm. The p1 gene is tightly linked with a second gene, p2, and both genes encode similar Myb-domain proteins. We show here that maize cell cultures transformed with either the p1 or p2 genes expressed under a constitutive promoter accumulate transcripts for flavonoid biosynthetic genes, and synthesize phenylpropanoids and C-glycosyl flavones related to maysin. Additionally, maize plants that are deleted for the p1 gene have reduced maysin levels and moderate silk-browning reaction, whereas plants with a deletion of both p1 and p2 have non-detectable silk maysin and non-browning silks. We conclude that both p1 and p2 induce maysin biosynthesis in silk, although the two genes differ in their expression and pigmentation effects in other tissues. These results show that a QTL for flavone biosynthesis actually comprises two tightly linked genes with related functions.

    Topics: Flavones; Flavonoids; Gene Deletion; Gene Expression Regulation, Plant; Genes, Duplicate; Genes, Plant; Glucosides; Mutation; Plant Proteins; Proto-Oncogene Proteins c-myb; Quantitative Trait Loci; Transformation, Genetic; Zea mays

2003