lignans and wogonin

lignans has been researched along with wogonin* in 3 studies

Other Studies

3 other study(ies) available for lignans and wogonin

ArticleYear
Simultaneous determination of asarinin, β-eudesmol, and wogonin in rats using ultraperformance liquid chromatography-tandem mass spectrometry and its application to pharmacokinetic studies following administration of standards and Gumiganghwal-tang.
    Biomedical chromatography : BMC, 2021, Volume: 35, Issue:4

    Asarinin, β-eudesmol, and wogonin have common antiangiogenic activities and have the potential for use in chemotherapy. Besides, they are multivalent substances that are combined in various herbal medicines. The purpose of this study was to develop a method for simultaneous analysis of asarinin, β-eudesmol, and wogonin, which are representative pharmacological components of Asarum heterotropoides, Atractylodes lancea, and Scutellaria baicalensis, respectively, in rat biosamples using ultraperformance liquid chromatography-tandem mass spectrometry. The three components were separated using 5 mm aqueous ammonium acetate containing 0.1% formic acid and acetonitrile as a mobile phase, equipped with a KINETEX core-shell C

    Topics: Animals; Chromatography, High Pressure Liquid; Dioxoles; Flavanones; Lignans; Linear Models; Male; Plant Extracts; Rats; Rats, Sprague-Dawley; Reproducibility of Results; Sensitivity and Specificity; Sesquiterpenes, Eudesmane; Tandem Mass Spectrometry

2021
Simultaneous determination of wogonin, oroxylin a, schisandrin, paeoniflorin and emodin in rat serum by HPLC-MS/MS and application to pharmacokinetic studies.
    Biomedical chromatography : BMC, 2017, Volume: 31, Issue:10

    Topics: Animals; Chromatography, High Pressure Liquid; Cyclooctanes; Drugs, Chinese Herbal; Emodin; Female; Flavanones; Flavonoids; Glucosides; Lignans; Limit of Detection; Linear Models; Male; Monoterpenes; Polycyclic Compounds; Rats; Rats, Wistar; Reproducibility of Results; Tandem Mass Spectrometry

2017
[Non-alkaloid chemical constituents from Coptis chinensis].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2012, Volume: 37, Issue:9

    To separate and identify chemical constituents from Coptis chinensis.. The compounds were separated and purified by various chromatographic techniques. Their structures were identified on the basis of their physicochemical properties using spectral techniques such as NMR and MS.. Thirteen compounds were separated from ethanol extracts of C. chinensis, including seven lignans, three simple phenylpropanoids, two flavones and one phenolic acid, and identified as erythro-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (1), threo-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (2), (+)-pinoresinol (3), (+)-medioresinol (4), (+)-lariciresinol (5), (+)-5'-methoxylariciresinol (6), (+)-isolariciresinol (7), chlorogenic acid (8), ferulic acid (9), Z-octadecyl caffeate (10), rhamnetin (11), wogonin (12), and vanillic acid (13).. Compounds 1, 2, 4, 6, 10-13 were separated from the genus Coptis for the first time.

    Topics: Caffeic Acids; Chlorogenic Acid; Coptis; Coumaric Acids; Ethanol; Flavanones; Flavones; Furans; Hydroxybenzoates; Lignans; Lignin; Naphthols; Quercetin; Vanillic Acid

2012