laromustine and methyl-isocyanate

laromustine has been researched along with methyl-isocyanate* in 3 studies

Reviews

1 review(s) available for laromustine and methyl-isocyanate

ArticleYear
Laromustine, a sulfonyl hydrolyzing alkylating prodrug for cancer therapy.
    IDrugs : the investigational drugs journal, 2009, Volume: 12, Issue:1

    Laromustine (Onrigin), under development by Vion Pharmaceuticals Inc, belongs to the sulfonylhydrazine class of alkylating agents and is in clinical development for the treatment of malignancies. Laromustine is a prodrug that yields a chloroethylating compound (VNP-4090-CE) and a carbamoylating compound (methyl isocyanate). The antineoplastic effect of laromustine is attributed primarily to the chloroethylating species, which causes the preferential alkylation of DNA at the O6 position of guanine, a lesion that results in interstrand crosslinks and, eventually, cell death. The carbamoylating species contributes to antitumor activity by inhibiting the DNA repair protein O6-alkylguanine transferase. Early phase I clinical trials in patients with solid tumors indicated that laromustine was associated with myelosuppression; few extramedullary toxicities were observed, indicating potential efficacy for the treatment of hematological malignancies. Phase II trials have been completed in patients with previously untreated acute myelogenous leukemia (AML), high-risk myelodysplastic syndrome (MDS) and relapsed AML. The most encouraging results were observed in patients over 60 years of age with poor-risk de novo AML for which no standard treatment exists. Laromustine is currently in phase II/III trials for AML and phase II trials for MDS and solid tumors. Laromustine appears to be a promising agent that will add to the armamentarium of drugs available to treat patients who do not respond to, or are not fit for, intensive chemotherapy, such as elderly individuals.

    Topics: Aged; Animals; Antineoplastic Agents, Alkylating; Clinical Trials as Topic; Humans; Hydrazines; Isocyanates; Middle Aged; Neoplasms; Prodrugs; Sulfonamides

2009

Other Studies

2 other study(ies) available for laromustine and methyl-isocyanate

ArticleYear
Carbamoylating activity associated with the activation of the antitumor agent laromustine inhibits angiogenesis by inducing ASK1-dependent endothelial cell death.
    PloS one, 2014, Volume: 9, Issue:7

    The anticancer agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]hydrazine (laromustine), upon decomposition in situ, yields methyl isocyanate and the chloroethylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE). 90CE has been shown to kill tumor cells via a proposed mechanism that involves interstrand DNA cross-linking. However, the role of methyl isocyanate in the antineoplastic function of laromustine has not been delineated. Herein, we show that 1,2-bis(methylsulfonyl)-1-[(methylamino)carbonyl]hydrazine (101MDCE), an analog of laromustine that generates only methyl isocyanate, activates ASK1-JNK/p38 signaling in endothelial cells (EC). We have previously shown that ASK1 forms a complex with reduced thioredoxin (Trx1) in resting EC, and that the Cys residues in ASK1 and Trx1 are critical for their interaction. 101MDCE dissociated ASK1 from Trx1, but not from the phosphoserine-binding inhibitor 14-3-3, in whole cells and in cell lysates, consistent with the known ability of methyl isocyanate to carbamoylate free thiol groups of proteins. 101MDCE had no effect on the kinase activity of purified ASK1, JNK, or the catalytic activity of Trx1. However, 101MDCE, but not 90CE, significantly decreased the activity of Trx reductase-1 (TrxR1). We conclude that methyl isocyanate induces dissociation of ASK1 from Trx1 either directly by carbamoylating the critical Cys groups in the ASK1-Trx1 complex or indirectly by inhibiting TrxR1. Furthermore, 101MDCE (but not 90CE) induced EC death through a non-apoptotic (necroptotic) pathway leading to inhibition of angiogenesis in vitro. Our study has identified methyl isocyanates may contribute to the anticancer activity in part by interfering with tumor angiogenesis.

    Topics: Animals; Antineoplastic Agents; Biocatalysis; Carbamates; Cattle; Cell Death; Cells, Cultured; Endothelial Cells; Humans; Hydrazines; Immunoblotting; Isocyanates; MAP Kinase Kinase Kinase 5; Mitogen-Activated Protein Kinase 8; Neovascularization, Physiologic; Signal Transduction; Sulfonamides; Thioredoxin Reductase 1; Thioredoxins

2014
The antineoplastic efficacy of the prodrug Cloretazine is produced by the synergistic interaction of carbamoylating and alkylating products of its activation.
    Oncology research, 2005, Volume: 15, Issue:6

    Cloretazine {1,2-bis(methylsulfonyl)-1-[(2-chloroethyl)-2-(methylamino)carbonyl]hydrazine; VNP40101M; 101M} is a sulfonylhydrazine prodrug that possesses broad spectrum antitumor efficacy against transplanted murine and human tumor models and has shown activity in clinical trials against relapsed or refractory acute myeloid leukemia. Base catalyzed activation of this prodrug generates two different reactive intermediates: chloroethylating species that covalently interact with DNA at the O6-position of guanine residues that progress to a G-C interstrand cross-link, and a carbamoylating agent, methyl isocyanate. Previous findings from this laboratory have provided initial evidence that methyl isocyanate can contribute to the efficacy of Cloretazine by enhancing the cytotoxicity of the generated chloroethylating species. This action may be due in part to inhibition of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT); however, activity in cells devoid of AGT indicates that other actions are involved in the synergistic cytotoxicity. Herein we demonstrate that O6-benzylguanine can also produce synergistic cell kill with the alkylating component of Cloretazine but differs from methyl isocyanate in that the enhancement occurs in AGT-containing cells, but not in cells devoid of AGT. Methyl isocyanate generated by the decomposition of 1,2-bis(methylsulfonyl)-1-[methylaminocarbonyl]hydrazine also acts to enhance the activity of a variety of DNA cross-linking agents, while only producing additive cytotoxicity with methylating agents. Flow cytometric studies using annexin as a marker for apoptosis indicate that in Chinese hamster ovary cells and in human leukemia cells Cloretazine-induced apoptosis is primarily caused by the generated methyl isocyanate. Comet assays designed to detect DNA cross-links in intact cells indicate that the chloroethylating species generated by the activation of Cloretazine produce DNA cross-links, with the co-generated methyl isocyanate increasing the degree of cross-linking produced by the reactive chloroethylating species. These findings provide further evidence that the methyl isocyanate produced by the activation of Cloretazine can be a major contributor to the cytotoxicity produced by this antineoplastic agent.

    Topics: Animals; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Biotransformation; Cell Line; Cells, Cultured; CHO Cells; Cricetinae; Drug Synergism; Guanine; HL-60 Cells; Humans; Hydrazines; Isocyanates; O(6)-Methylguanine-DNA Methyltransferase; Prodrugs; Sulfonamides; Transfection

2005
chemdatabank.com