irosustat has been researched along with coumarin* in 4 studies
4 other study(ies) available for irosustat and coumarin
Article | Year |
---|---|
Synthesis of tricyclic fused coumarin sulfonates and their inhibitory effects on LPS-induced nitric oxide and PGE2 productions in RAW 264.7 macrophages.
The regulations of NO and PGE2 productions are research topics of interest in the field of antiinflammatory drug development. In the present study, a series of tricyclic fused coumarin sulfonate derivatives was synthesized and evaluated for their abilities to inhibit NO and PGE2 productions in LPS-induced RAW 264.7 macrophages. Among all the target compounds, compound 1g possessing p-(trifluoromethyl)phenyl and fused cycloheptane moieties showed the highest inhibitory effects on NO and PGE2 productions. Compound 1g not only inhibited COX-2 activity but also reduced expressions of COX-2 and iNOS. Furthermore, ADME profiling showed that compounds 1g, 1j, 1m, and 1n are estimated to be orally bioavailable. Topics: Animals; Cell Line; Coumarins; Dinoprostone; Dose-Response Relationship, Drug; Lipopolysaccharides; Macrophages; Mice; Nitric Oxide; Sulfonic Acids | 2014 |
In vitro evaluation of the interaction potential of irosustat with drug-metabolizing enzymes.
Irosustat is a first-generation, irreversible, steroid sulfatase inhibitor currently in development for hormone-dependent cancer therapy. To predict clinical drug-drug interactions between irosustat and possible concomitantly administered medications, the inhibition/induction potential of irosustat with the main drug-metabolizing enzymes was investigated in vitro. The interaction of aromatase inhibitors in the in vitro metabolism of irosustat was also studied. Irosustat inhibited CYP1A2 activity in human liver microsomes through the formation of its desulfamoylated degradation product and metabolite 667-coumarin. CYP1A2 inhibition by 667-coumarin was competitive, with a K(i) of 0.77 μM, a concentration exceeding by only 5-fold the maximal steady-state concentration of 667-coumarin in human plasma with the recommended dose of irosustat. In addition, 667-coumarin metabolites enhanced the inhibition of CYP1A2 activity. Additional clinical interaction studies of irosustat with CYP1A2 substrate drugs are strongly recommended. 667-Coumarin also appeared to be a competitive inhibitor of CYP2C19 (K(i) = 5.8 μM) in human liver microsomes, and this inhibition increased with assessment in human hepatocytes. Inhibition of CYP2C19 enzyme activity was not caused by repression of CYP2C19 gene expression. Therefore, additional mechanistic experiments or follow-up studies with clinical evaluation are recommended. Irosustat neither inhibited CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4/5, or UDP-glucuronosyltransferase 1A1, 1A4, or 2B7 activities nor induced CYP1A2, CYP2C9, CYP2C19, or CYP3A4/5 at clinically relevant concentrations. Results from human liver microsomes indicated that no changes in irosustat pharmacokinetics in vivo are expected as a result of inhibition of irosustat metabolism in cases of concomitant medication administration or irosustat-aromatase inhibitor combination therapy with letrozole, anastrozole, or exemestane. Topics: Aromatase Inhibitors; Coumarins; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Interactions; Female; Glucuronosyltransferase; Hepatocytes; Humans; Isoenzymes; Microsomes, Liver; Sulfonic Acids | 2012 |
Development of a sensitive high-performance liquid chromatography method for the detection of 667 COUMATE in vivo.
Steroid sulphatase inhibitors which decrease or prevent the biosynthesis of oestrogens, potentially have an important role in the treatment of breast cancer in postmenopausal women. The non-steroidal sulphatase inhibitor 667 COUMATE has been shown to be active both in vitro and in vivo. The pharmacokinetics of this drug have not been investigated. In preparation for the clinical evaluation of this agent, a sensitive and robust reversed phase high-performance liquid chromatography (HPLC) method was developed for the detection of 667 COUMATE in biological fluids. The sulphatase inhibitor was extracted from plasma with diethyl ether and separated from putative metabolites and endogenous plasma components with a C3-phenyl column. Using this method an extraction efficiency of 76+/-5% and a limit of detection of less than 0.1 ng/ml was achieved. The stability of this agent was investigated under different pH conditions and during storage in plasma at room temperature or -20 degrees C. 667 COUMATE was found to be stable when stored in acidified plasma (pH 4.5) at -20 degrees C. In conclusion, the HPLC method developed is a reproducible and sensitive assay that will enable quantitation of the potent non-steroidal sulphatase inhibitor 667 COUMATE in biological fluids in the forthcoming Phase I clinical trial. Topics: Chemistry, Clinical; Chromatography, High Pressure Liquid; Coumarins; Ether; Humans; Hydrogen-Ion Concentration; Models, Chemical; Sulfonamides; Sulfonic Acids; Temperature; Time Factors | 2003 |
Inhibition of MCF-7 breast cancer cell proliferation and in vivo steroid sulphatase activity by 2-methoxyoestradiol-bis-sulphamate.
The endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2) inhibits the growth of breast cancer cells and is also a potent anti-angiogenic agent. We have previously shown that the 3-sulphamoylated derivatives of 2-methoxyoestrogens are more potent than the non-sulphamoylated compounds. In this study, we have compared the abilities of 2-methoxyoestradiol-bis-sulphamate (2-MeOE2bisMATE) and 2-MeOE2 to inhibit the growth of MCF-7 breast cancer cells. Both compounds inhibited cell growth with the IC(50) for 2-MeOE2bisMATE (0.4 microM) being six-fold lower than that for 2-MeOE2 (2.5 microM). Oestrogen sulphamates are potent inhibitors of steroid sulphatase (STS) activity. 2-MeOE2bisMATE was found to retain its STS inhibitory activity and in a placental microsome assay system it was equipotent with oestrone-3-O-sulphamate (EMATE). An in vivo study was also carried out to compare the potency of 2-MeOE2bisMATE with that of EMATE and the non-steroidal STS inhibitor, 667 coumarin sulphamate (667 COUMATE). After a single oral dose (10mg/kg) some recovery of STS activity was detected by day 3 (10%) with activity partially restored (55%) by day 7 after administration of 667 COUMATE. For the other two steroidal compounds, STS activity remained almost completely inactivated for up to 5 days with complete restoration of activity occurring by day 15. The anti-proliferative and STS inhibitory properties of 2-MeOE2bisMATE suggest that it has considerable potential for development as a novel anti-cancer drug. Topics: 2-Methoxyestradiol; Animals; Arylsulfatases; Cell Division; Coumarins; Dose-Response Relationship, Drug; Enzyme Inhibitors; Estradiol; Female; Humans; Inhibitory Concentration 50; Microsomes; Models, Chemical; Placenta; Rats; Rats, Wistar; Steryl-Sulfatase; Sulfonamides; Sulfonic Acids; Time Factors; Tumor Cells, Cultured | 2003 |