iproniazid has been researched along with donepezil in 30 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 25 (83.33) | 24.3611 |
2020's | 5 (16.67) | 2.80 |
Authors | Studies |
---|---|
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Barber, J; Dawson, S; Kenna, JG; Paul, N; Stahl, S | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Jiang, N; Kong, LY; Lan, JS; Li, F; Wang, J; Wang, X; Wang, ZM; Wu, JJ; Xie, SS | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Estrada, M; Herrera-Arozamena, C; Morales-García, JA; Pérez, C; Pérez-Castillo, A; Rodríguez-Franco, MI; Romero, A; Viña, D | 1 |
Cao, Z; Deng, Y; Li, Y; Luo, L; Qiang, X; Sang, Z; Su, F; Xiao, G; Yang, X; Zheng, Y | 1 |
Ai, J; Deng, Y; Li, Y; Liu, Q; Luo, L; Qiang, X; Tan, Z; Xiao, G; Yang, X | 1 |
Cao, Z; Deng, Y; Li, Y; Luo, L; Qiang, X; Song, Q; Tan, Z; Xiao, G; Xu, R; Yang, X | 1 |
Cao, Z; Deng, Y; Li, Y; Luo, L; Qiang, X; Tan, Z; Xu, R; Yang, X; Zheng, Y | 1 |
Liu, W; Ma, Q; Pan, W; Sang, Z; Wang, K; Yu, L | 1 |
Ding, Y; Hou, JW; Kang, P; Lan, JS; Liu, Y; Xie, SS; Zhang, T; Zhang, XY | 1 |
Han, X; Liu, W; Ma, Q; Sang, Z; Wang, H; Wang, K; Ye, M; Yu, L | 2 |
Cao, Z; Deng, Y; Li, Y; Liu, H; Qiang, X; Song, Q; Tan, Z; Xu, R; Yang, J; Zhang, X | 1 |
Deng, Y; Li, Y; Liu, H; Song, Q; Tan, Z; Xiao, G; Xu, R; Yang, Z; Zhang, X; Zheng, Y | 1 |
de Andrés, L; Estrada Valencia, M; Herrera-Arozamena, C; Laurini, E; Morales-García, JA; Pérez, C; Pérez-Castillo, A; Pricl, S; Ramos, E; Rodríguez-Franco, MI; Romero, A; Viña, D; Yáñez, M | 1 |
Cai, P; Fang, SQ; Kong, LY; Liu, QH; Wang, XB; Yang, HL; Yang, XL | 1 |
Liu, W; Sang, Z; Shi, J; Tan, Z; Wang, K | 1 |
Liu, W; Sang, Z; Shi, J; Tan, Z; Wang, K; Zhang, P | 1 |
Fan, X; Liu, W; Sang, Z; Shi, J; Wang, K; Yang, D; Zhang, P; Zhang, Z; Zhu, G | 1 |
Bai, P; Cheng, X; Cheng, Y; Lu, X; Sang, Z; Shi, J; Wang, K; Yang, J; Zhang, P; Zhang, Q; Zheng, C | 1 |
Cao, Z; Deng, Y; Li, Y; Luo, L; Qiang, X; Song, Q; Tan, Z | 1 |
Huang, M; Jiang, N; Kong, LY; Lan, JS; Wang, XB; Yin, FC | 1 |
Cao, Z; Cong, S; Deng, Y; Liu, Z; Song, Q; Tan, Z; Yu, G | 1 |
Cao, Z; Deng, Y; Sang, Z; Song, Q; Tan, Z; Zhang, L | 1 |
Amoroso, R; Carradori, S; De Filippis, B; Fantacuzzi, M | 1 |
2 review(s) available for iproniazid and donepezil
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy.
Topics: Humans; Neurodegenerative Diseases; Polyphenols; Resveratrol; Stilbenes; Structure-Activity Relationship | 2022 |
28 other study(ies) available for iproniazid and donepezil
Article | Year |
---|---|
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Cholestasis; Drug-Related Side Effects and Adverse Reactions; Humans; Insecta; Rats; Risk Factors | 2012 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Animals; Butyrylcholinesterase; Cell Line, Tumor; Cholinesterase Inhibitors; Cholinesterases; Coumarins; Donepezil; Dose-Response Relationship, Drug; Drug Design; Eels; Humans; Indans; Models, Molecular; Molecular Structure; Molecular Targeted Therapy; Piperidines; Structure-Activity Relationship | 2016 |
New cinnamic - N-benzylpiperidine and cinnamic - N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties.
Topics: Alzheimer Disease; Amines; Animals; Antioxidants; Cell Line, Tumor; Cholinesterases; Drug Design; Humans; Male; Mice; Molecular Targeted Therapy; Monoamine Oxidase; Neuroprotective Agents; Piperidines | 2016 |
Multitarget drug design strategy against Alzheimer's disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties.
Topics: Acetylcholinesterase; Alzheimer Disease; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Drug Design; Humans; Isoflavones; Mannich Bases; Molecular Docking Simulation; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Structure-Activity Relationship | 2017 |
Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Cholinesterase Inhibitors; Drug Design; Electrophorus; Humans; Mannich Bases; Neuroprotective Agents; PC12 Cells; Rats | 2017 |
Multifunctional thioxanthone derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Cell Line; Cholinesterase Inhibitors; Humans; Kinetics; Models, Molecular; Monoamine Oxidase Inhibitors; Thioxanthenes; Xanthones | 2017 |
Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Antioxidants; Chelating Agents; Cholinesterase Inhibitors; Electrophorus; Humans; Kinetics; Mannich Bases; Metals; Models, Molecular; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Pyridoxine; Rats; Resveratrol; Stilbenes | 2017 |
Design, synthesis and biological evaluation of 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Electrophorus; Humans; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quinolines; Swine | 2017 |
Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Cholinesterase Inhibitors; Coumarins; Dose-Response Relationship, Drug; Drug Design; Humans; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; PC12 Cells; Protein Aggregates; Pyridinium Compounds; Rats; Structure-Activity Relationship | 2017 |
Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multifunctional cholinesterase and monoamine oxidase-B inhibitors for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Amines; Binding Sites; Blood-Brain Barrier; Cell Line, Tumor; Cell Survival; Cholinesterase Inhibitors; Cholinesterases; Drug Design; Humans; Inhibitory Concentration 50; Kinetics; Molecular Docking Simulation; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Phthalimides; Protein Structure, Tertiary; Structure-Activity Relationship | 2017 |
Design, synthesis and biological evaluation of 2-acetyl-5-O-(amino-alkyl)phenol derivatives as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Antioxidants; Benzophenones; Binding Sites; Blood-Brain Barrier; Cell Survival; Cholinesterase Inhibitors; Drug Design; Humans; Hydrogen Peroxide; Inhibitory Concentration 50; Molecular Docking Simulation; Monoamine Oxidase; Neuroprotective Agents; PC12 Cells; Permeability; Phenols; Piperazines; Protein Structure, Tertiary; Rats; Structure-Activity Relationship | 2017 |
Design, synthesis and evaluation of 4'-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer's disease treatment.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Blood-Brain Barrier; Cell Line; Cell Survival; Chalcones; Chelating Agents; Copper; Drug Design; Flurbiprofen; Humans; Lipopolysaccharides; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Nitric Oxide; Peptide Fragments; Recombinant Proteins; Structure-Activity Relationship | 2018 |
Multifunctional 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Benzylamines; Blood-Brain Barrier; Cholinesterase Inhibitors; Drug Design; Humans; Kinetics; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Permeability; Protein Aggregates; Recombinant Proteins; Structure-Activity Relationship; Thiazoles | 2018 |
Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Cell Line; Cholinesterase Inhibitors; Donepezil; Enzyme Inhibitors; Flavonoids; Humans; Indans; Lipoxygenase Inhibitors; Male; Mice, Inbred BALB C; Models, Molecular; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neurogenesis; Neuroprotective Agents; Piperidines; Receptors, sigma; Sigma-1 Receptor | 2018 |
Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer's disease agents with cholinergic, antioxidant, and neuroprotective properties.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Butylated Hydroxytoluene; Cell Line; Cholinergic Agents; Cholinesterase Inhibitors; Donepezil; Dose-Response Relationship, Drug; Indans; Mice; Molecular Structure; Neuroprotective Agents; PC12 Cells; Piperidines; Protein Aggregates; Rats; Structure-Activity Relationship | 2018 |
Design, synthesis, in-silico and biological evaluation of novel chalcone-O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Butyrylcholinesterase; Chalcones; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Drug Design; Eels; Female; Horses; Humans; Male; Maze Learning; Mice; Mice, Inbred Strains; Models, Molecular; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Peptide Fragments; Protein Aggregates; Rats; Structure-Activity Relationship | 2019 |
Design, synthesis, in-silico and biological evaluation of novel chalcone derivatives as multi-function agents for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Butyrylcholinesterase; Chalcone; Cholinesterase Inhibitors; Drug Design; Eels; Horses; Humans; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neuroprotective Agents; Peptide Fragments; Protein Aggregates | 2019 |
The development of 2-acetylphenol-donepezil hybrids as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Cholinesterase Inhibitors; Cholinesterases; Donepezil; Drug Design; Drug Development; Humans; Kinetics; Models, Molecular; Molecular Docking Simulation; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Structure-Activity Relationship | 2019 |
Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Biological Transport; Blood-Brain Barrier; Butyrylcholinesterase; Chalcones; Chelating Agents; Cholinesterase Inhibitors; Coordination Complexes; Copper; Drug Design; Female; Humans; Male; Memory Disorders; Mice; Molecular Docking Simulation; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neuroprotective Agents; Protein Binding; Scopolamine; Structure-Activity Relationship | 2019 |
Design, synthesis and evaluation of phthalide alkyl tertiary amine derivatives as promising acetylcholinesterase inhibitors with high potency and selectivity against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amines; Amyloid beta-Peptides; Animals; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Female; Male; Membranes, Artificial; Mice; Models, Molecular; Molecular Docking Simulation; Molecular Structure; Permeability; Protein Aggregation, Pathological; Random Allocation; Rats | 2020 |
Chromone and donepezil hybrids as new multipotent cholinesterase and monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease.
Topics: | 2020 |
Novel 3-benzylidene/benzylphthalide Mannich base derivatives as potential multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Benzofurans; Benzylidene Compounds; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Copper; Dose-Response Relationship, Drug; Electrophorus; Female; Humans; Male; Mannich Bases; Mice; Mice, Inbred Strains; Models, Molecular; Molecular Structure; Neuroprotective Agents; PC12 Cells; Peptide Fragments; Protein Aggregates; Rats; Structure-Activity Relationship | 2021 |
Design, synthesis and evaluation of novel dimethylamino chalcone-O-alkylamines derivatives as potential multifunctional agents against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amines; Amyloid beta-Peptides; Animals; Antioxidants; Binding Sites; Cell Survival; Chalcone; Drug Design; Humans; Kinetics; Metals; Molecular Docking Simulation; Monoamine Oxidase; Neuroprotective Agents; PC12 Cells; Protein Aggregates; Rats; Structure-Activity Relationship | 2021 |