enkephalin--leucine-2-alanine and norbinaltorphimine
enkephalin--leucine-2-alanine has been researched along with norbinaltorphimine* in 18 studies
Other Studies
18 other study(ies) available for enkephalin--leucine-2-alanine and norbinaltorphimine
Article | Year |
---|---|
Characterisation of opioid receptors involved in modulating circular and longitudinal muscle contraction in the rat ileum.
1. The aim of the present investigation was to characterise the opioid receptor subtypes present in the rat ileum using a method that detects drug action on the enteric nerves innervating the circular and longitudinal muscles. 2. Neurogenic contractions were reversibly inhibited by morphine (circular muscle pEC50, 6.43+/-0.17, Emax 81.7+/-5.0%; longitudinal muscle pEC50, 6.65+/-0.27, Emax 59.7+/-7.8%), the mu-opioid receptor-selective agonist, DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin acetate) (circular pEC50, 7.85+/-0.04, Emax 97.8+/-3.6%; longitudinal pEC50, 7.35+/-0.09, Emax 56.0+/-6.1%), the delta-selective agonist DADLE ([D-Ala2,D-Leu5]enkephalin acetate) (circular pEC50, 7.41+/-0.17, Emax, 93.3+/-8.4%; longitudinal pEC50, 6.31+/-0.07, Emax 66.5+/-5.2%) and the kappa-selective agonist U 50488H (trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide methanesulphonate) (circular pEC50, 5.91+/-0.41, Emax, 83.5+/-26.8%; longitudinal pEC50, 5.60+/-0.08, Emax 74.3+/-7.2%). Agonist potencies were generally within expected ranges for activity at the subtype for which they are selective, except for U 50488H, which was less potent than expected. 3. The mu and delta receptor-selective antagonists, CTAP (H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) and naltrindole, caused progressive, parallel rightward shifts in the DAMGO and DADLE curves, respectively. Analysis indicated conformity to theoretical simple competitive antagonist behaviour. U 50488H effects were insensitive to the kappa-selective antagonist, n-BNI. A high concentration (1 microM) of naltrexone caused apparent potentiation of U 50488H effects. 4. CTAP pK(B) estimates were consistent with previously reported values for mu receptor antagonism (circular 7.84+/-0.17, longitudinal 7.64+/-0.35). However, the naltrindole pK(B) estimates indicated lower antagonist potency than expected (circular 8.22+/-0.23, longitudinal 8.53+/-0.35). 5. It is concluded that mu and possibly atypical delta receptors (but not kappa receptors) mediate inhibition of contraction in this model. Nonopioid actions of U 50488H are probably responsible for the inhibitory effects seen with this compound. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine-2-Alanine; Enteric Nervous System; Female; Guinea Pigs; Ileum; In Vitro Techniques; Male; Morphine; Muscle Contraction; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu | 2005 |
Opioid-mediated modulation of calcium currents in striatal and pallidal neurons following reserpine treatment: focus on kappa response.
Previous work has shown that enkephalins target N-type calcium (Ca2+) channels in striatal and globus pallidus (GP) neurons, principally through activation of mu-like receptors. Here, we examined the effects of selective mu, delta, and kappa agonists on Ca2+ currents in striatal and GP neurons isolated from either control or reserpine-treated rats. In cells from control rats DAMGO and dynorphin (DYN) inhibited high-voltage-activated (HVA) Ca2+ currents preferentially in "medium-to-small" GP cells (likely to correspond to parvalbumin-negative cells). The kappa response was elicited by several agonists (DYN 17, DYN 13, BRL, U50-488-H), U50-488-H being the most effective (>30% maximal inhibition). U50-488-H affected both omega-CgTxGVIA-sensitive and nimodipine-sensitive Ca2+ conductances. The kappa-mediated effect (but not the mu response) was slow and blocked by chelerythrine, supporting the involvement of protein kinase C. In neurons from reserpinized rats we observed modest changes in the mu-inhibited fraction in small GP cells and a dramatic reduction of the kappa-sensitive fraction in principal striatal cells. These data imply that aminergic depletion alters opiate transmission differentially in the indirect and direct pathways. The suppression of the kappa response only in striatum reinforces the notion of an imbalance of endogenous opiates as relevant in extrapyramidal motor dysfunctions. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic Uptake Inhibitors; Alkaloids; Analgesics, Non-Narcotic; Analgesics, Opioid; Analysis of Variance; Animals; Benzophenanthridines; Calcium Channel Blockers; Calcium Channels; Cell Size; Cells, Cultured; Corpus Striatum; Dose-Response Relationship, Drug; Drug Interactions; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine-2-Alanine; Enzyme Inhibitors; Male; Membrane Potentials; Naltrexone; Narcotic Antagonists; Neural Inhibition; Neurons; omega-Conotoxin GVIA; Patch-Clamp Techniques; Phenanthridines; Rats; Rats, Wistar; Receptors, Opioid, kappa; Reserpine | 2004 |
Role of kappa-opioid receptor activation in pharmacological preconditioning of swine.
Pharmacological preconditioning with kappa-opioid receptor agonists is proarrhythmic and exerts antipreconditioning effects in rats. In swine, it is unknown whether kappa-opioid receptor stimulation plays a role in pharmacological preconditioning. Swine were preconditioned with 1) saline (controls), 2) [d-Ala(2),d-Leu(5)]enkephalin (DADLE), 3) morphine, 4) pentazocine, 5) norbinaltorphimine (nor-BNI), 6) DADLE + nor-BNI, 7) morphine + nor-BNI, or 8) pentazocine + nor-BNI before occlusion (45 min) and reperfusion (180 min) of the left anterior descending coronary artery. Infarct size to area at risk (IS), regional (systolic shortening) and global (pressures and flows) myocardial function, and arrhythmia occurrence were assessed. Only DADLE + nor-BNI preconditioning significantly decreased infarct size compared with controls (47 +/- 13 vs. 65 +/- 5%, P < 0.05); morphine preconditioning was not cardioprotective with or without kappa-opioid receptor blockade (nor-BNI). DADLE preconditioning significantly increased ischemia-induced arrhythmias relative to controls, whereas pentazocine-preconditioned animals (n = 2) experienced intractable ventricular fibrillation during ischemia. kappa-Opioid receptor blockade with DADLE or pentazocine preconditioning alleviated proarrhythmic effects. These results suggest that kappa-opioid receptor activation during pharmacological preconditioning is proarrhythmic in swine. Topics: Animals; Arrhythmias, Cardiac; Coronary Circulation; Enkephalin, Leucine-2-Alanine; Hemodynamics; Ischemic Preconditioning, Myocardial; Morphine; Myocardial Infarction; Myocardial Ischemia; Naltrexone; Narcotic Antagonists; Narcotics; Pentazocine; Receptors, Opioid, kappa; Swine | 2003 |
Crystal structure of biphalin sulfate: a multireceptor opioid peptide.
Biphalin is a dimeric opioid peptide, composed of two tetrapeptides connected 'tail-to-tail', that exhibits a high affinity for all three opioid receptor types (i.e. mu, delta and kappa). This study presents the X-ray crystal structure of biphalin sulfate and compares it to other opioids that interact with the same biological targets. Both halves of the molecule have a folded backbone conformation but differ significantly from one another. Residues 1-4 in biphalin, which compare well with the delta selective opioid peptide DADLE, fold into a random coil. Residues 5-8, which can be fit to the mu selective peptide D-TIPP-NH2, exhibit a fairly normal type III' beta bend. Biphalin also exhibits structural similarities with two naltrexone analogs, naltrexonazine and norbinaltorphamine, that are specific to mu and kappa receptor sites. Topics: Binding Sites; Crystallography, X-Ray; Enkephalin, Leucine-2-Alanine; Enkephalins; Hydrogen Bonding; Naltrexone; Narcotics; Oligopeptides; Pliability; Protein Conformation; Protein Folding; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Structure-Activity Relationship; Substrate Specificity; Tetrahydroisoquinolines | 2002 |
Opioids suppress basal and nicotine-induced catecholamine secretion via a stabilizing effect on actin filaments.
Catecholamine secretion and actin filament disassembly are closely coupled in chromaffin cells. Opioid suppression of catecholamine secretion is fast and transient, both characteristics of actin filament involvement. The aim of the present work was to test the hypothesis that opioids suppress catecholamine secretion via an inhibitory effect on actin filament disassembly. For this purpose we used the PC12 rat pheochromocytoma cell line. Norepinephrine and dopamine were measured by enzyme-linked immunosorbent assay or RIA. Polymerized actin was measured by rhodamine-phalloidin and visualized by confocal laser scanning microscopy. Opioids suppressed basal catecholamine secretion. The onset of this effect was fast and transient, peaking at 2 min, and was reversible by opioid antagonists. Synchronously, opioids suppressed actin filament disassembly; this was also reversible by opioid antagonists. Cytochalasin B prevented the inhibitory effect of opioids on catecholamine secretion. In addition, opioids suppressed the stimulatory effect of nicotine on catecholamine secretion and actin depolymerization. Changes in actin cytoskeleton in neuron-like PC12 cells make them resistant to both effects of opioids, i.e. on catecholamine secretion and actin disassembly. In conclusion, our data suggest that the suppressive effect of opioids on basal and nicotine-induced catecholamine secretion may result from an opioid-provoked stabilization of cortical actin. It also appears that basal catecholamine secretion is associated with opioid-sensitive machinery regulating the continuous formation of short-lived areas of cortical actin filament disassembly. Topics: Actins; Animals; Benzeneacetamides; Cytochalasin B; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine-2-Alanine; Humans; Naltrexone; Narcotics; Nicotine; Norepinephrine; PC12 Cells; Pyrrolidines; Rats | 2001 |
Rostral ventrolateral medullary opioid receptor subtypes in the inhibitory effect of electroacupuncture on reflex autonomic response in cats.
Electroacupuncture (EA) is used in traditional Chinese medicine to treat arrhythmias, hypertension and myocardial ischemia. Our previous work suggests that the inhibitory effect of EA on the pressor reflex induced by bradykinin (BK) applied to the gallbladder is due, in part, to the activation of opioid receptors, most likely located in the rostral ventrolateral medulla (rVLM). However, specific opioid receptor subtypes, and hence the neurotransmitters. responsible for this inhibition are unknown. Therefore, in anesthetized cats, BK (10 microg/ml) was applied to the gallbladder to induce transient reflex increases in arterial blood pressure (BP). EA (1-2 mA, 5 Hz, 0.5 ms pulses) was delivered through acupuncture needles inserted bilaterally into Neiguan and Jianshi acupoints on forelimbs, overlying the median nerves. EA attenuated the BK-induced pressor response by 39%. Opioid receptor subtype antagonists or agonists were microinjected unilaterally into the rVLM. The mu- and delta-receptor antagonists CTOP and ICI 174,864, respectively, significantly attenuated the EA-induced inhibition for at least 30 min. The K-receptor antagonist (nor-BNI) was less effective and was shorter acting. Like EA, microinjection of mu- and delta-opioid agonists, DAGO and DADLE, respectively, into the rVLM significantly decreased the pressor responses. In contrast, the kappa-opioid agonist, U50,488, failed to alter the BK-induced pressor response. We conclude that a significant portion of inhibition of the gallbladder pressor response by EA is related to activation of mu- and delta-opioid receptors in the rVLM. The endogenous neurotransmitters for mu- and delta-opioid receptors, beta-endorphins and enkephalins, in the rVLM, therefore appear to play a role in the EA-related modulation of cardiovascular reflex responses. Conversely, dynorphin is less likely to be involved in this response. Topics: Animals; Autonomic Nervous System; Cats; Electroacupuncture; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Gallbladder; Medulla Oblongata; Microinjections; Naltrexone; Narcotic Antagonists; Neural Inhibition; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reflex; Somatostatin | 2001 |
Ligands for opioid and sigma-receptors improve cardiac electrical stability in rat models of post-infarction cardiosclerosis and stress.
The effects of the extremely selective mu-opioid receptor agonist, [D-Arg2,Lys4]-dermorphin-(1-4)-amide (DALDA), the mu-opioid receptor agonist morphine, the mu/delta agonist D-Ala2, Leu5, Arg6-enkephalin (dalargin), the kappa-opioid receptor agonist spiradoline, and the sigma1-receptor antagonist DuP 734 on ventricular fibrillation threshold (VFT) was investigated in an experimental post-infarction cardiosclerosis model and an immobilization stress-induced model in rats. Both models produced a significant decrease in VFT. The postinfarction cardiosclerosis-induced decrease in VFT was significantly reversed by intravenous administration of dalargin (0.1 mg/kg), DALDA (0.1 mg/kg), or morphine HCl (1.5 mg/kg). Pretreatment with naloxone (0.2 mg/kg) completely eliminated the increase in cardiac electrical stability produced by DALDA. Both spiradoline (8 mg/kg, i.p.) and DuP 734 (1 mg/kg, i.p.) produced a significant increase in VFT in rats with post-infarction cardiosclerosis. This effect of spiradoline was blocked by nor-binaltorphimine. The immobilization stress-induced decrease in VFT was significantly reversed by administration of either DALDA, spiradoline or DuP 734. In conclusion, activation of either mu- or kappa1-opioid receptors or blockade of sigma1-receptors reversed the decrease in VFT in both cardiac compromised models. Since DALDA and dalargin essentially do not cross blood brain barriers, their effects on VFT may be mediated through peripheral mu-opioid receptors. Topics: Animals; Anti-Arrhythmia Agents; beta-Endorphin; Disease Models, Animal; Dynorphins; Enkephalin, Leucine-2-Alanine; Heart; Immobilization; Ligands; Morphine; Myocardial Infarction; Myocardium; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Piperidines; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, delta; Stress, Physiological; Ventricular Fibrillation | 1999 |
Evaluation of opioid receptor subtype antagonist effects in the ventral tegmental area upon food intake under deprivation, glucoprivic and palatable conditions.
Opioid receptor subtype antagonists differentially alter food intake under deprivation (24 h), glucoprivic (2-deoxy-D-glucose, 500 mg/kg, i.p.) or palatable (10% sucrose) conditions with mu (beta-funaltrexamine) and kappa (nor-binaltorphamine), but not delta1 ([D-Ala2,Leu5,Cys6]enkephalin) opioid antagonists reducing each form of intake following ventricular microinjection. Both mu and kappa opioid antagonists microinjected into either the hypothalamic paraventricular nucleus or the nucleus accumbens reduce intake under deprivation and glucoprivic conditions. Palatable intake is reduced by both antagonists in the paraventricular nucleus, but only mu antagonists are active in the accumbens. Food intake is stimulated by mu and delta, but not kappa, opioid agonists microinjected into the ventral tegmental area. The present study examined whether food intake under either deprivation, glucoprivic or palatable conditions was altered by bilateral administration of general (naltrexone), mu, kappa, delta1 or delta2 (naltrindole isothiocyanate) opioid antagonists into the ventral tegmental area. Deprivation (24 h)-induced feeding was significantly reduced by high (50 microg), but not lower (10-20 microg) doses of naltrexone (21%), and by delta2 (4 microg, 19%) antagonism in the ventral tegmental area. 2-Deoxy-D-glucose (500 mg/kg, i.p.)-induced hyperphagia was significantly reduced by high (50 microg), but not lower (20 microg) doses of naltrexone (64%), and by delta2 (4 microg, 27%) antagonism in the ventral tegmental area. Sucrose (10%) intake was significantly reduced by naltrexone (20-50 microg, 25-39%) and delta2 (4 microg, 25%) antagonism in the ventral tegmental area. Neither mu, kappa nor delta1 antagonists were effective in reducing any form of intake following microinjection into the ventral tegmental area. These data indicate that the ventral tegmental area plays a relatively minor role in the elicitation of these forms of food intake, and that delta2, rather than mu, kappa or delta1 opioid receptors appear responsible for mediation of these forms of intake by this nucleus. Topics: Deoxyglucose; Eating; Enkephalin, Leucine-2-Alanine; Evaluation Studies as Topic; Food Deprivation; Hyperphagia; Insulin; Naltrexone; Narcotic Antagonists; Sucrose; Ventral Tegmental Area | 1997 |
Selective actions of central mu and kappa opioid antagonists upon sucrose intake in sham-fed rats.
Intake of a palatable sucrose solution in real-fed rats is mediated in part by central mu and kappa opioid receptors. Since general opioid antagonists still inhibit sucrose intake in sham-fed rats, the present study examined whether centrally administered mu (beta-funaltrexamine: 5, 20 micrograms), mu1 (naloxonazine: 50 micrograms), kappa (nor-binaltorphamine: 1, 5, 20 micrograms), delta (naltrindole: 20 micrograms) or delta 1 (DALCE: 40 micrograms) opioid subtype antagonists altered sucrose intake in sham-fed rats in a similar manner to systemic naltrexone (0.01-1 mg/kg) and whether such effects were equivalent to altering the sucrose concentration. Sucrose (20%) intake in sham-fed rats was significantly and dose-dependently reduced by naltrexone (59%), beta-funaltrexamine (44%) and nor-binaltorphamine (62%), but not by naloxonazine, naltrindole or DALCE. The reductions in sham sucrose (20%) intake by general, mu and kappa antagonism were similar in pattern and magnitude to diluting sucrose concentration from 20% to 10% in untreated sham-fed rats. Since both real-fed and sham-fed rats share similar patterns of specificity of opioid effects, magnitudes and potencies of inhibition, it suggests that central mu and kappa antagonism acts on orosensory mechanisms supporting sucrose intake. Topics: Animals; Cerebral Ventricles; Eating; Enkephalin, Leucine-2-Alanine; Infusions, Parenteral; Male; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sucrose | 1995 |
Analysis of central opioid receptor subtype antagonism of hypotonic and hypertonic saline intake in water-deprived rats.
Intake of either hypotonic or hypertonic saline solutions is modulated in part by the endogenous opioid system. Morphine and selective mu and delta opioid agonists increase saline intake, while general opioid antagonists reduce saline intake in rats. The present study evaluated whether intracerebroventricular administration of general (naltrexone) and selective mu (beta-funaltrexamine, 5-20 micrograms), mu, (naloxonazine, 50 micrograms), kappa (nor-binaltorphamine, 5-20 micrograms), delta (naltrindole, 20 micrograms), or delta 1 (DALCE, 40 micrograms) opioid receptor subtype antagonists altered water intake and either hypotonic (0.6%) or hypertonic (1.7%) saline intake in water-deprived (24 h) rats over a 3-h time course in a two-bottle choice test. Whereas peripheral naltrexone (0.5-2.5 mg/kg) significantly reduced water intake and hypertonic saline intake, central naltrexone (1-50 micrograms) significantly reduced water intake and hypotonic saline intake. Water intake was significantly reduced following mu and kappa receptor antagonism, but not following mu 1, delta, or delta 1 receptor antagonism. In contrast, neither hypotonic nor hypertonic saline intake was significantly altered by any selective antagonist. These data are discussed in terms of opioid receptor subtype control over saline intake relative to the animal's hydrational state and the roles of palatability and/or salt appetite. Topics: Animals; Enkephalin, Leucine-2-Alanine; Hypotonic Solutions; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Saline Solution, Hypertonic; Water Deprivation | 1995 |
Central opioid receptor subtype mediation of isoproterenol-induced drinking in rats.
Opioid receptor subtype antagonists differentially alter different types of water intake such that mu2 receptors modulate deprivation-induced water intake, kappa receptors modulate hypertonic saline-induced water intake, and mu2, delta1 and kappa receptors modulate water intake following Angiotensin II (ANG II). Water intake stimulated by peripheral administration of the beta-adrenergic agonist, isoproterenol is attenuated by naloxone and is thought to be mediated by release of renin and production of ANG II. The present study examined whether systemic and i.c.v. administration of general opioid antagonists and central administration of specific opioid receptor subtype antagonists would selectively alter water intake following isoproterenol in rats. Both systemic (1 mg/kg s.c.) and central (1-20 micrograms) naltrexone reduced water intake induced by isoproterenol (25 micrograms/kg s.c.) over a 2-h period. The mu receptor antagonist, beta-funaltrexamine (B-FNA: 1-20 micrograms), but not the mu1 antagonist, naloxonazine (50 micrograms), dose-dependently reduced isoproterenol drinking. Both the kappa antagonist, nor-binaltorphamine (Nor-BNI, 5-20 micrograms) and the delta1 antagonist, [D-Ala2, Leu5, Cys6]-enkephalin (DALCE, 1-40 micrograms) also dose-dependently reduced isoproterenol drinking. These data implicate mu2, kappa and delta1 sites in the opioid modulation of isoproterenol drinking. Topics: Animals; Drinking; Enkephalin, Leucine-2-Alanine; Injections, Intraventricular; Injections, Subcutaneous; Isoproterenol; Male; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, mu | 1994 |
Differential modulation of angiotensin II and hypertonic saline-induced drinking by opioid receptor subtype antagonists in rats.
Opioid modulation of ingestion includes general opioid antagonism of different forms of water intake, mu 2 receptor modulation of deprivation-induced water intake and delta 2 receptor modulation of saccharin intake. Water intake is stimulated by both central administration of angiotensin II (ANG II) and peripheral administration of a hypertonic saline solution; both responses are reduced by general opioid antagonists. The present study examined whether specific opioid receptor subtype antagonists would selectively alter each form of water intake in rats. Whereas systemic naltrexone (0.1-2.5 mg/kg, s.c.) reduced water intake induced by either peripheral ANGII (500 micrograms/kg, s.c.) or hypertonic saline (3 ml/kg, 10%), intracerebroventricular (i.c.v.) naltrexone (1-50 micrograms) only inhibited central ANGII (20 ng)-induced hyperdipsia. Both forms of drinking were significantly and dose-dependently inhibited by the selective kappa antagonist, nor-binaltorphamine (Nor-BNI, 1-20 micrograms). Whereas both forms of drinking were transiently reduced by the mu-selective antagonist, beta-funaltrexamine (beta-FNA, 1-20 micrograms), the mu 1 antagonist, naloxonazine (40 micrograms) stimulated drinking following hypertonic saline. The delta 1 antagonist, [D-Ala2, Leu5, Cys6]-enkephalin (DALCE, 1-40 micrograms) significantly reduced drinking following ANGII, but not following hypertonic saline; the delta antagonist, naltrindole failed to exert significant effects. These data indicate that whereas kappa opioid binding sites modulate hyperdipsia following hypertonic saline, mu 2, delta 1, and kappa opioid binding sites modulate hyperdipsia following ANGII. The mu 1 opioid binding site may normally act to inhibit drinking following saline. Topics: Angiotensin II; Animals; Drinking; Enkephalin, Leucine-2-Alanine; Male; Naltrexone; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu; Saline Solution, Hypertonic | 1994 |
Central opioid receptor subtype antagonists differentially reduce intake of saccharin and maltose dextrin solutions in rats.
Opioid modulation of ingestion includes general opioid antagonism of deprivation-induced water intake and intake of sucrose and saccharin solutions. Previous studies using selective subtype antagonists indicated that opioid effects upon deprivation-induced water intake occurred through the mu2 receptor and that opioid effects upon sucrose intake occurred through kappa and mu2 receptors. The present study compared the effects of intracerebroventricular administration of opioid receptor subtype antagonists upon intakes of a saccharin solution and a maltose dextrin (MD) solution to determine which receptor subtypes were involved in modulation of ingestion of different preferred tastants. Significant reductions in saccharin intake (1 h) occurred following naltrexone (20-50 micrograms: 66%) and naltrindole (delta, 20 micrograms: 75%), whereas [D-Ala2, Leu5, Cys6]-enkephalin (DALCE, delta 1, 40 micrograms: 45%) had transient (5 min) effects. Neither beta-funaltrexamine (B-FNA, mu), naloxonazine (mu1), nor nor-binaltorphamine (Nor-BNI, kappa) significantly altered saccharin intake. Significant reductions in MD intake (1 h) occurred following naltrexone (5-50 micrograms: 69%) and B-FNA (1-20 micrograms: 38%). MD intake was not reduced by naltrindole, DALCE, naloxonazine and Nor-BNI. Peak antagonist effects were delayed (20-25 min) to reflect interference with the maintenance, rather than the initiation of saccharin or MD intake. Comparisons of opioid antagonist effects across intake situations revealed that naltrexone had consistently low ID40 values for saccharin (29 nmol), MD (25 nmol), sucrose (6 nmol) and deprivation (38 nmol) intake. Despite its significant effects relative to naloxonazine, B-FNA had significantly higher ID40 values for saccharin (800 nmol), MD (763 nmol) and sucrose (508 nmol) relative to deprivation (99 nmol) intake, suggesting that mu2 receptors may be mediating maintenance of intake rather than taste effects. Nor-BNI had low ID40 values for intake of sucrose (4 nmol), but not for saccharin (168 nmol), MD (153 nmol) and deprivation (176 nmol), suggesting that kappa receptors may mediate ingestion of sweet-tasting stimuli. That delta (naltrindole: ID40 = 60 nmol), but not delta 1 (DALCE: ID40 = 288 nmol) antagonists consistently reduce saccharin intake suggests a role for the delta 2 receptor subtype in the modulation of hedonic orosensory signals. Topics: Animals; Drinking Behavior; Enkephalin, Leucine-2-Alanine; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Polysaccharides; Rats; Rats, Sprague-Dawley; Saccharin | 1993 |
Effects of selective opioid receptor agonists and antagonists during myocardial ischaemia.
The antiarrhythmic activities of 16-methylcyprenorphine (M8008), nor-binaltorphimine (NBT) and naltrexone, which are relatively specific opioid receptor antagonists for delta, kappa and mu receptors, respectively, were examined during the 30 min following coronary artery occlusion in anaesthetised rats. The haemodynamic and electrocardiographic effects of the opioid receptor agonists [D-Ala2,D-Leu5]enkephalin (DADLE) (relatively selective for delta receptors), ICI-204448 (kappa) and glyol (mu) were also investigated over the 30-90 min post ligation period. When administered intravenously 5 min before ligation, M8008 (0.5 mg kg-1 and 2.5 mg kg-1) reduced the number of ventricular ectopic beats but had no effect on the incidence or duration of ventricular fibrillation. NBT and naltrexone were not antiarrhythmic at a dose of 0.5 mg kg-1 but at 2.5 mg kg-1 (a concentration at which both drugs block kappa receptors) the number of ventricular ectopic beats, the incidence of ventricular fibrillation and mortality were all reduced. All of the opioid receptor agonists caused a transient decrease in heart rate and in arterial blood pressure but none exhibited an arrhythmogenic effect. These studies suggest that the delta and kappa opioid receptor antagonists used may be antiarrhythmic as a result of blockade of the action of endogenously released peptides acting on these receptors or that they have a non-specific 'direct' antiarrhythmic action. Topics: Animals; Arrhythmias, Cardiac; Coronary Disease; Coronary Vessels; Electrophysiology; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine-2-Alanine; Enkephalins; Hemodynamics; Male; Morphinans; Naltrexone; Narcotic Antagonists; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1992 |
Ingestive behavior following central [D-Ala2, Leu5, Cys6]-enkephalin (DALCE), a short-acting agonist and long-acting antagonist at the delta opioid receptor.
DALCE (1-40 micrograms, ICV), a short-acting agonist and long-acting antagonist at the delta opioid receptor, was examined for its effects upon food intake in rats under spontaneous, deprivation, glucoprivic and palatable conditions. DALCE (10 micrograms) significantly stimulated free feeding for up to 10 h but only minimally decreased (40 micrograms) food intake and body weight after 24-72 h. DALCE, administered prior to food deprivation (24 h), failed to affect subsequent 24-h intake and sporadically decreased intake and body weight change after 48-72 h. 2-Deoxy-D-glucose (650 mg/kg, IP) hyperphagia was transiently (2 h) decreased by long-term DALCE (10 micrograms) pretreatment. Hyperphagia following exposure to a high-fat diet was significantly potentiated by long-term DALCE (1 microgram) pretreatment. DALCE (10 micrograms) hyperphagia (2-10 h) was eliminated by central pretreatment with either naltrexone (20 micrograms) or the kappa antagonist, nor-binaltorphamine (20 micrograms) but was minimally affected by central pretreatment with the mu antagonist, beta-funaltrexamine (20 micrograms) or long-term DALCE (40 micrograms). The general inability of the antagonist actions of DALCE to alter these forms of feeding argues against a role for the delta opioid receptor in these responses. Topics: Animals; Deoxyglucose; Diet; Dietary Fats; Dose-Response Relationship, Drug; Enkephalin, Leucine-2-Alanine; Feeding Behavior; Food Deprivation; Glucose; Injections, Intraventricular; Male; Naltrexone; Narcotic Antagonists; Rats; Rats, Inbred Strains; Receptors, Opioid, delta | 1991 |
Only one pharmacophore is required for the kappa opioid antagonist selectivity of norbinaltorphimine.
We have investigated whether one or two pharmacophores are required for the kappa opioid receptor selectivity of the bivalent opioid antagonist norbinaltorphimine, (-)-1 (nor-BNI), by the synthesis and testing of its meso isomer 2. In smooth muscle preparations 2 was more potent than 1 and about half as selective as a kappa antagonist. Since 2 contains only one antagonist pharmacophore but yet retains substantial kappa selectivity, it is concluded that kappa selectivity is not dependent on the presence of two (-)-naltrexone-derived pharmacophores of 1. It is suggested that the kappa selectivity of (-)-1 and 2 is derived from the portions of the second halves of these molecules in that they mimic key "address" components of dynorphin at kappa opioid receptors. Topics: Animals; Chemical Phenomena; Chemistry; Cyclazocine; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Ethylketocyclazocine; Guinea Pigs; Ileum; Male; Mice; Morphine; Naltrexone; Receptors, Opioid; Receptors, Opioid, kappa; Stereoisomerism; Structure-Activity Relationship; Vas Deferens | 1988 |
Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays.
Previously, we reported on an opioid antagonist, nor-binaltorphimine (nor-BNI), that had high selectivity for kappa opioid receptors in smooth muscle preparations. In this study, nor-BNI administered either s.c. or i.c.v. was shown to antagonize significantly the antinociceptive effects of the kappa opioid agonists, ethylketazocine and U-50,488H at doses that had no effect on the antinociceptive effect of mu agonists, morphine and [D-Ala3, MePhe4, Gly-ol5]enkephalin and the delta agonist, [D-Pen3, D-Pen5]enkephalin. Nor-BNI and U-50,488H were used to demonstrate that kappa opioid receptors in the spinal cord were more important than those located supraspinally for kappa-mediated analgesia. Nor-BNI also possessed high affinity and high selectivity for kappa opioid receptors in the receptor binding assay. However, the comparatively low selectivity of BNI in receptor binding studies did not correlate with the high pharmacologic selectivity for kappa receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Animals; Cyclazocine; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Ethylketocyclazocine; Guinea Pigs; Male; Mice; Morphine; Naltrexone; Oligopeptides; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, kappa | 1988 |
Binaltorphimine and nor-binaltorphimine, potent and selective kappa-opioid receptor antagonists.
The opioid antagonist activities of two bivalent ligands, BNI and nor-BNI, have been evaluated in smooth muscle preparations and in mice. Both ligands are highly potent and selective as kappa opioid receptor antagonists, with relatively feeble blocking activity at mu and delta opioid receptors. BNI and nor-BNI represent the first highly selective kappa opioid receptor antagonists and should be of great utility as molecular probes for identifying the interaction of agonist ligands with kappa opioid receptors in vitro and in vivo. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Chemical Phenomena; Chemistry; Cyclazocine; Dynorphins; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Ethylketocyclazocine; Guinea Pigs; Male; Mice; Morphine; Naloxone; Naltrexone; Pyrrolidines; Rabbits; Receptors, Opioid; Receptors, Opioid, kappa | 1987 |