dynorphins has been researched along with ifenprodil* in 4 studies
4 other study(ies) available for dynorphins and ifenprodil
Article | Year |
---|---|
Dynorphin up-regulation in the dentate granule cell mossy fiber pathway following chronic inhibition of GluN2B-containing NMDAR is associated with increased CREB (Ser 133) phosphorylation, but is independent of BDNF/TrkB signaling pathways.
Emerging evidence suggests that neuronal responses to N-methyl-d-aspartate (NMDAR) activation/inactivation are influenced by subunit composition. For example, activation of synaptic NMDAR (comprised of GluN2A>GluN2B) phosphorylates cAMP-response-element-binding protein (CREB) at Ser 133, induces BDNF expression and promotes neuronal survival. Activation of extrasynaptic NMDAR (comprised of GluN2B>GluN2) dephosphorylates CREB (Ser 133), reduces BDNF expression and triggers neuronal death. These results led us to hypothesize that chronic inhibition of GluN2B-containing NMDAR would increase CREB (Ser 133) phosphorylation, increase BDNF levels and subsequently alter downstream dynorphin (DYN) and neuropeptide Y (NPY) expression. We focused on DYN and NPY because these neuropeptides can decrease excitatory neurotransmission and seizure occurrence and we reported previously that seizure-like events are reduced following chronic treatment with GluN2B antagonists. Consistent with our hypothesis, chronic treatment (17-21days) of hippocampal slice cultures with the GluN2B-selective antagonists ifenprodil or Ro25,6981 increased both CREB (Ser 133) phosphorylation and granule cell mossy fiber pathway DYN expression. Similar treatment with the non-subtype-selective NMDAR antagonists d-APV or memantine had no significant effect on either CREB (Ser 133) phosphorylation or DYN expression. In contrast to our hypothesis, BDNF levels were decreased following chronic treatment with Ro25,6981, but not ifenprodil, d-APV or memantine. Blockade of BDNF actions and TrkB activation did not significantly augment hilar DYN expression in vehicle-treated cultures and had no effect in Ro25,6981 treated cultures. These findings suggest that chronic exposure to GluN2B-selective NMDAR antagonists increased DYN expression through a putatively pCREB-dependent, but BDNF/TrkB-independent mechanism. Topics: 2-Amino-5-phosphonovalerate; Animals; Brain-Derived Neurotrophic Factor; Cyclic AMP Response Element-Binding Protein; Dynorphins; Memantine; Mossy Fibers, Hippocampal; Neuropeptide Y; Phenols; Phosphorylation; Piperidines; Protein Processing, Post-Translational; Rats; Rats, Sprague-Dawley; Receptor, trkB; Receptors, N-Methyl-D-Aspartate; Signal Transduction; Up-Regulation | 2014 |
Pronociceptive role of dynorphins in uninjured animals: N-ethylmaleimide-induced nociceptive behavior mediated through inhibition of dynorphin degradation.
Intrathecal (i.t.) administration into mice of N-ethylmaleimide (NEM), a cysteine protease inhibitor, produced a characteristic behavioral response, the biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank. The behavior induced by NEM was inhibited by the intraperitoneal injection of morphine. We have recently reported that dynorphin A and, more potently big dynorphin, consisting of dynorphins A and B, produce the same type of nociceptive response whereas dynorphin B does not [Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C, Sakurada T, Bakalkin G, Terenius L, Kisara K. Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res 2002;952:7-14]. The NEM-induced nociceptive behavior was inhibited by pretreatment with dynorphin A- or dynorphin B-antiserum and each antiserum also reduced the nociceptive effects of i.t.-injected synthetic big dynorphin. The characteristic NEM-evoked response was not observed in prodynorphin knockout mice. Naloxone, an opioid receptor antagonist, had no effects on the NEM-induced behavior. Ifenprodil, arcaine and agmatine, antagonists at the polyamine recognition site on the N-methyl-D-aspartate (NMDA) receptor ion-channel complex, and MK-801, an NMDA ion-channel blocker inhibited the NEM-induced effects. Ro25-6981, an antagonist of the NMDA receptor subtype containing NR2B subunit was not active. NEM completely inhibited degradation of dynorphin A by soluble and particulate fractions of mouse spinal cord. Collectively, the results demonstrate that endogenous prodynorphin-derived peptides are pronociceptive in uninjured animals, and required for the NEM-induced behavior. The NEM effects may be mediated through inhibition of the degradation of endogenous dynorphins, presumably big dynorphin that in turn activates the NMDA receptor ion-channel complex by acting on the polyamine recognition site. Topics: Agmatine; Analysis of Variance; Animals; Behavior, Animal; Biguanides; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Interactions; Dynorphins; Enkephalins; Enzyme Inhibitors; Ethylmaleimide; Excitatory Amino Acid Antagonists; Immune Sera; Injections, Spinal; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Morphine; Narcotics; Nociceptin Receptor; Piperidines; Protein Precursors; Receptors, Opioid; Spinal Cord; Time Factors | 2005 |
Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-D-aspartate receptor mechanism.
Intrathecal (i.t.) administration of big dynorphin (1-10 fmol), a prodynorphin-derived peptide consisting of dynorphin A and dynorphin B, to mice produced a characteristic behavioral response, the biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank, which peaked at 5-15 min after an injection. Dynorphin A produced a similar response, though the doses required were higher (0.1-30 pmol) whereas dynorphin B was practically inactive even at 1000 pmol. The behavior induced by big dynorphin (3 fmol) was dose-dependently inhibited by intraperitoneal injection of morphine (0.125-2 mg/kg) and also dose-dependently, by i.t. co-administration of D(-)-2-amino-5-phosphonovaleric acid (D-APV) (1-4 nmol), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 (0.25-4 nmol), an NMDA ion-channel blocker, and ifenprodil (2-8 pmol), an inhibitor of the NMDA receptor ion-channel complex interacting with the NR2B subunit and the polyamine recognition site. On the other hand, naloxone, an opioid receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA glutamate receptor antagonist, 7-chlorokynurenic acid, a competitive antagonist of the glycine recognition site on the NMDA receptor ion-channel complex, [D-Phe(7),D-His(9)]-substance P(6-11), a specific antagonist for substance P (NK1) receptors, and MEN-10376, a tachykinin NK2 receptor antagonist, had no effect. These results suggest that big dynorphin-induced nociceptive behavior is mediated through the activation of the NMDA receptor ion-channel complex by acting on the NR2B subunit and/or the polyamine recognition site but not on the glycine recognition site, and does not involve opioid, non-NMDA glutamate receptor mechanisms or tachykinin receptors in the mouse spinal cord. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics, Opioid; Animals; Behavior, Animal; Dizocilpine Maleate; Dynorphins; Endorphins; Enkephalins; Excitatory Amino Acid Antagonists; Injections, Spinal; Kynurenic Acid; Male; Mice; Morphine; Neurokinin A; Nociceptors; Peptide Fragments; Piperidines; Protein Precursors; Receptors, N-Methyl-D-Aspartate; Receptors, Tachykinin; Substance P | 2002 |
Ifenprodil blocks the excitatory effects of the opioid peptide dynorphin 1-17 on NMDA receptor-mediated currents in the CA3 region of the guinea pig hippocampus.
This study found that dynorphin had a biphasic concentration response relationship on N-methyl-D-aspartate (NMDA) receptor-mediated currents in the CA3 region of the guinea pig hippocampal slice. A previous study demonstrated that the inhibitory effect was mediated by a kappa 2 opioid receptor. In the present study, the polyamine site antagonist ifenprodil converted dynorphin's biphasic concentration response relationship to a monophasic inhibitory curve. The polyamine diethylenetriamine also blocked dynorphin's excitatory actions. The combination of dynorphin 1-17 and naloxone produced neurotoxicity, presumably as a result of dynorphin's excitatory actions on NMDA receptors. In addition, the release of endogenous dynorphin from mossy fibers in the presence of naloxone injured the cells. Ifenprodil prevented the neurotoxicity of both applied and released dynorphin. These findings suggest that dynorphin acts at a polyamine site to produce its excitatory effects and, further, suggest that dynorphin may mediate some neuropathologies through its interaction at this site. Topics: Animals; Binding Sites; Dynorphins; Electric Conductivity; Electric Stimulation; Excitatory Amino Acid Antagonists; Guinea Pigs; Hippocampus; Male; Naloxone; Narcotic Antagonists; Piperidines; Polyamines; Receptors, N-Methyl-D-Aspartate | 1998 |