dynorphins and entacapone

dynorphins has been researched along with entacapone* in 1 studies

Other Studies

1 other study(ies) available for dynorphins and entacapone

ArticleYear
Entacapone potentiates the long-duration response but does not normalize levodopa-induced molecular changes.
    Neurobiology of disease, 2008, Volume: 32, Issue:3

    Coadministration of entacapone with levodopa attenuates motor complications in experimental models of Parkinson's disease. The mechanisms underlying entacapone effects are unknown. We investigated the effect of entacapone, on: long-duration response (LDR) to levodopa, levodopa-induced postsynaptic pharmacodynamic mechanisms and molecular changes in hemiparkinsonian rats. 6-Hydroxydopamine-unilaterally lesioned rats were treated with levodopa (25 mg/kg)+vehicle; levodopa+entacapone (30 mg/kg) or saline, twice daily for 22 days. The LDR and the apomorphine-induced rotations were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin and dopamine D-3 receptor mRNAs, subthalamic cytochrome oxidase mRNA and nigral glutamic acid decarboxylase mRNA. Entacapone potentiated the LDR but did not modify either the apomorphine-induced rotational behavior or the molecular changes. Our results suggest that the effects of entacapone on levodopa-induced motor response are not mediated by postsynaptic mechanisms and that administration of entacapone is not able to normalize the molecular alterations induced by levodopa in the basal ganglia.

    Topics: Animals; Antiparkinson Agents; Apomorphine; Brain; Catechols; Corpus Striatum; Dynorphins; Electron Transport Complex IV; Enkephalins; Gene Expression; Glutamate Decarboxylase; Immunohistochemistry; In Situ Hybridization; Levodopa; Male; Motor Activity; Nitriles; Parkinsonian Disorders; Protein Precursors; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D3; RNA, Messenger; Substantia Nigra; Subthalamus

2008