catechin has been researched along with vitexin in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (10.00) | 18.2507 |
2000's | 1 (10.00) | 29.6817 |
2010's | 6 (60.00) | 24.3611 |
2020's | 2 (20.00) | 2.80 |
Authors | Studies |
---|---|
Du, GH; Lee, SM; Liu, AL; Wang, HD; Wang, YT | 1 |
Amić, D; Lucić, B | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Cahlikova, L; Chlebek, J; Havrankova, J; Hofman, J; Hostalkova, A; Lundova, T; Musilek, K; Novotna, E; Wsol, V; Zemanova, L | 1 |
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V | 1 |
Du, YP; Ma, BP; Pang, X; Wang, M; Wang, SY; Zhang, J; Zhao, Y; Zheng, XH | 1 |
Declume, C; Gleye, J; Lasserre, B; Vibes, J | 1 |
Angelino, D; Bagatta, M; De Nicola, GR; Farabegoli, F; Gennari, L; Iori, R; Ninfali, P; Orlandi, M; Papi, A | 1 |
Bhatt, V; Kumar, N; Sharma, S; Sharma, U; Singh, B | 1 |
Deng, B; Han, B; Liu, W; Ma, S; Ren, D; Xiao, J; Xin, Z; Yi, L; Zhang, Y | 1 |
10 other study(ies) available for catechin and vitexin
Article | Year |
---|---|
Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities.
Topics: Animals; Antiviral Agents; Cell Line; Cytopathogenic Effect, Viral; Dogs; Flavonoids; Influenza A Virus, H1N1 Subtype; Influenza A Virus, H3N2 Subtype; Influenza B virus; Molecular Structure; Neuraminidase; Orthomyxoviridae; Structure-Activity Relationship | 2008 |
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.
Topics: Aldehyde Reductase; Aldo-Keto Reductases; Apigenin; Daunorubicin; Enzyme Inhibitors; Flavones; Flavonoids; HCT116 Cells; Humans; Luteolin; Molecular Conformation; Molecular Structure; Neoplasms | 2015 |
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins | 2020 |
Phenolic compounds from the leaves of Crataegus pinnatifida Bge. var. major N.E.Br. And their lipid-lowering effects.
Topics: Cell Survival; Crataegus; Dose-Response Relationship, Drug; Hep G2 Cells; Humans; Molecular Structure; Phenols; Plant Leaves; Structure-Activity Relationship; Triglycerides | 2021 |
Inhibition of thromboxane A2 biosynthesis in vitro by the main components of Crataegus oxyacantha (Hawthorn) flower heads.
Topics: Animals; Apigenin; Blood Platelets; Catechin; Flavonoids; Horses; Hydrolysis; Microsomes; Plant Extracts; Plants, Medicinal; Quercetin; Thromboxane A2 | 1994 |
Vitexin-2-O-xyloside, raphasatin and (-)-epigallocatechin-3-gallate synergistically affect cell growth and apoptosis of colon cancer cells.
Topics: Apigenin; Apoptosis; Caspase 3; Catechin; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Drug Synergism; Humans; Isothiocyanates; Mitochondria; Reactive Oxygen Species | 2013 |
Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of Zanthoxylum armatum using UPLC-DAD-ESI-QTOF-MS/MS.
Topics: Amides; Apigenin; Benzodioxoles; Catechin; Chromatography, High Pressure Liquid; Coumarins; Dioxoles; Flavonoids; Furans; Hesperidin; Hydroxybenzoates; Lignans; Limit of Detection; Plant Leaves; Powders; Reproducibility of Results; Seasons; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Zanthoxylum | 2017 |
UPLC-Orbitrap-MS/MS combined with chemometrics establishes variations in chemical components in green tea from Yunnan and Hunan origins.
Topics: Apigenin; Catechin; China; Chromatography, High Pressure Liquid; Cluster Analysis; Discriminant Analysis; Plant Extracts; Principal Component Analysis; Tandem Mass Spectrometry; Tea | 2018 |