catechin and fisetin

catechin has been researched along with fisetin in 30 studies

Research

Studies (30)

TimeframeStudies, this research(%)All Research%
pre-19901 (3.33)18.7374
1990's5 (16.67)18.2507
2000's8 (26.67)29.6817
2010's13 (43.33)24.3611
2020's3 (10.00)2.80

Authors

AuthorsStudies
Ash, K; Grohmann, K; Manthey, CL; Manthey, JA; Montanari, A1
Strassburg, CP; Tukey, RH1
Chou, CJ; Frei, N; Grigorov, M; Lo Piparo, E; Scheib, H; Williamson, G1
Amić, D; Lucić, B1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Chu, SC; Hsieh, YS; Lin, JY1
Constantinou, A; Mehta, R; Moon, R; Rao, K; Runyan, C; Vaughan, A1
Chen, K; Cheng, YC; Hu, CQ; Kilkuskie, RE; Lee, KH; Shi, Q1
Calomme, M; Cimanga, K; Cos, P; Hu, JP; Pieters, L; Van Poel, B; Vanden Berghe, D; Vlietinck, AJ; Ying, L1
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D1
Domina, NG; Khlebnikov, AI; Kirpotina, LN; Quinn, MT; Schepetkin, IA1
Kogami, Y; Matsuda, H; Nakamura, S; Sugiyama, T; Ueno, T; Yoshikawa, M1
Kosaka, Y; Mizuguchi, M; Yokoyama, T1
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM1
Alunda, JM; Baptista, C; Behrens, B; Bifeld, E; Borsari, C; Clos, J; Cordeiro-da-Silva, A; Corral, MJ; Costantino, L; Costi, MP; Dello Iacono, L; Di Pisa, F; Eick, J; Ellinger, B; Ferrari, S; Gribbon, P; Gul, S; Henrich, S; Jiménez-Antón, MD; Keminer, O; Kohler, M; Kuzikov, M; Landi, G; Luciani, R; Mangani, S; Pellati, F; Poehner, I; Pozzi, C; Reinshagen, J; Santarem, N; Tait, A; Tejera Nevado, P; Torrado, J; Trande, M; Wade, RC; Witt, G; Wolf, M1
Jin, YS1
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V1
Fong, J; Korobkova, EA; Maran, U; Oja, M; Rice, M; Samuels, K; Sapse, AM; Williams, AK; Wong, B1
Halbach, G; Trost, W1
de Santi, C; Mosca, F; Pacifici, GM; Pietrabissa, A1
Dhar, K; Hosny, M; Rosazza, JP1
Chiang, HT; Lo, YK; Shen, AY; Wu, SN1
Fujita, Y; Hirooka, K; Kumamoto, K; Kunikane, S; Matsuoka, H; Tojo, S; Yoshida, K1
Adhami, VM; Khan, N; Mukhtar, H1
Ghasemzadeh, A; Jaafar, HZ; Rahmat, A1
Abel, J; Bothe, H; Fritsche, E; Gassmann, K; Götz, C; Haarmann-Stemmann, T1
Crosio, C; Dedola, S; Dessì, G; Iaccarino, C; Manconi, P; Mariani, A; Pala, N; Rassu, M; Sanna, V; Sechi, M1
Khan, N; Mukhtar, H1
Choi, C; Seo, DJ1
Gruendler, R; Haslberger, AG; Hippe, B; Peterlin, B; Sendula Jengic, V1

Reviews

5 review(s) available for catechin and fisetin

ArticleYear
Human UDP-glucuronosyltransferases: metabolism, expression, and disease.
    Annual review of pharmacology and toxicology, 2000, Volume: 40

    Topics: Autoimmunity; Chromosome Mapping; Glucuronides; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Neoplasms; Steroids; Terminology as Topic

2000
Recent advances in natural antifungal flavonoids and their derivatives.
    Bioorganic & medicinal chemistry letters, 2019, 10-01, Volume: 29, Issue:19

    Topics: Antifungal Agents; Biological Products; Flavonoids; Fungi; Humans; Mycoses

2019
Apoptosis by dietary agents for prevention and treatment of prostate cancer.
    Endocrine-related cancer, 2010, Volume: 17, Issue:1

    Topics: Adenocarcinoma; Aged; Animals; Apoptosis; Carotenoids; Catechin; Clinical Trials as Topic; Curcumin; Drug Screening Assays, Antitumor; Flavonoids; Flavonols; Genistein; Humans; Lycopene; Lythraceae; Male; Mice; Mice, Nude; Mice, Transgenic; Middle Aged; Neoplasm Proteins; Pentacyclic Triterpenes; Phytotherapy; Plant Extracts; Prostatic Neoplasms; Resveratrol; Stilbenes; Tumor Cells, Cultured

2010
Dietary agents for prevention and treatment of lung cancer.
    Cancer letters, 2015, Apr-10, Volume: 359, Issue:2

    Topics: Adenocarcinoma; Administration, Oral; Animals; Anticarcinogenic Agents; Antineoplastic Agents, Phytogenic; Catechin; Curcumin; Flavonoids; Flavonols; Humans; Indoles; Isothiocyanates; Lung Neoplasms; Plant Extracts; Polyphenols

2015
Nutraceutical Approaches of Autophagy and Neuroinflammation in Alzheimer's Disease: A Systematic Review.
    Molecules (Basel, Switzerland), 2020, Dec-18, Volume: 25, Issue:24

    Topics: Alzheimer Disease; Animals; Autophagy; Catechin; Cellular Senescence; Dietary Supplements; Flavonols; Humans; Inflammation; Spermidine

2020

Other Studies

25 other study(ies) available for catechin and fisetin

ArticleYear
Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-alpha expression by human monocytes.
    Journal of natural products, 1999, Volume: 62, Issue:3

    Topics: Citrus; Cyclic AMP; Flavonoids; Humans; In Vitro Techniques; Lipopolysaccharides; Monocytes; Phosphodiesterase Inhibitors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Necrosis Factor-alpha

1999
Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase.
    Journal of medicinal chemistry, 2008, Jun-26, Volume: 51, Issue:12

    Topics: alpha-Amylases; Catalytic Domain; Digestion; Flavones; Flavonols; Humans; Hydrogen Bonding; Ligands; Models, Molecular; Protein Conformation; Saliva; Starch; Structure-Activity Relationship

2008
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Inhibitory effects of flavonoids on Moloney murine leukemia virus reverse transcriptase activity.
    Journal of natural products, 1992, Volume: 55, Issue:2

    Topics: DNA Polymerase I; Flavonoids; Leukemia Virus, Murine; Reverse Transcriptase Inhibitors; Structure-Activity Relationship

1992
Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships.
    Journal of natural products, 1995, Volume: 58, Issue:2

    Topics: DNA Damage; DNA Topoisomerases, Type I; DNA Topoisomerases, Type II; Electrophoresis, Agar Gel; Flavonoids; Hydroxylation; Plasmids; Protein Conformation; Structure-Activity Relationship; Topoisomerase I Inhibitors; Topoisomerase II Inhibitors

1995
Anti-AIDS agents, 10. Acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids.
    Journal of natural products, 1994, Volume: 57, Issue:1

    Topics: Antiviral Agents; Cells, Cultured; Flavonoids; Galactosides; HIV-1; Humans; Mass Spectrometry; Medicine, Chinese Traditional; Plants, Medicinal; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; Structure-Activity Relationship; Virus Replication; Zidovudine

1994
Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.
    Journal of natural products, 1998, Volume: 61, Issue:1

    Topics: Enzyme Inhibitors; Flavonoids; Free Radical Scavengers; Structure-Activity Relationship; Xanthine Oxidase

1998
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
    Journal of medicinal chemistry, 2006, Jun-01, Volume: 49, Issue:11

    Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship

2006
Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems.
    Bioorganic & medicinal chemistry, 2007, Feb-15, Volume: 15, Issue:4

    Topics: Animals; Antioxidants; Drug Design; Flavonoids; Humans; Phagocytes; Phenols; Polyphenols; Quantitative Structure-Activity Relationship

2007
Structural requirements of flavonoids for the adipogenesis of 3T3-L1 cells.
    Bioorganic & medicinal chemistry, 2011, May-01, Volume: 19, Issue:9

    Topics: 3T3-L1 Cells; Adipogenesis; Animals; CCAAT-Enhancer-Binding Protein-alpha; CCAAT-Enhancer-Binding Protein-beta; CCAAT-Enhancer-Binding Protein-delta; Deoxyglucose; Fatty Acid-Binding Proteins; Flavonoids; Glucose Transporter Type 4; Mice; PPAR gamma; Structure-Activity Relationship

2011
Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids.
    Journal of medicinal chemistry, 2015, Sep-24, Volume: 58, Issue:18

    Topics: Adenosine Triphosphate; Allosteric Site; Anilino Naphthalenesulfonates; Binding, Competitive; Crystallography, X-Ray; Death-Associated Protein Kinases; Flavonoids; Kaempferols; Protein Binding; Protein Conformation; Structure-Activity Relationship

2015
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship

2015
Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs.
    Journal of medicinal chemistry, 2016, 08-25, Volume: 59, Issue:16

    Topics: Animals; Biological Products; Cell Line; Dose-Response Relationship, Drug; Flavonols; Humans; Macrophages; Mice; Mice, Inbred BALB C; Models, Molecular; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei

2016
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
    European journal of medicinal chemistry, 2020, Dec-15, Volume: 208

    Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins

2020
A role of flavonoids in cytochrome c-cardiolipin interactions.
    Bioorganic & medicinal chemistry, 2021, 03-01, Volume: 33

    Topics: Cardiolipins; Cytochromes c; Dose-Response Relationship, Drug; Enzyme Inhibitors; Flavonoids; Humans; Molecular Structure; Oxidation-Reduction; Structure-Activity Relationship

2021
Anti-phalloidine and anti-alpha-amanitine action of silybin in comparison with compounds similar to structural parts of silybin.
    Experientia, 1978, Aug-15, Volume: 34, Issue:8

    Topics: Alcohols; Amanitins; Animals; Catechin; Cinnamates; Female; Flavonoids; Flavonols; Male; Mice; Oligopeptides; Phalloidine; Phenols; Quercetin; Silymarin; Structure-Activity Relationship

1978
Glucuronidation of resveratrol, a natural product present in grape and wine, in the human liver.
    Xenobiotica; the fate of foreign compounds in biological systems, 2000, Volume: 30, Issue:11

    Topics: Adult; Aged; Apigenin; Catechin; Chromatography, Thin Layer; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Flavonoids; Flavonols; Glucuronic Acid; Humans; Hydrogen-Ion Concentration; Inhibitory Concentration 50; Kaempferols; Kinetics; Liver; Male; Microsomes, Liver; Middle Aged; Quercetin; Reproducibility of Results; Resveratrol; Rosales; Stilbenes; Wine

2000
Hydroxylations and methylations of quercetin, fisetin, and catechin by Streptomyces griseus.
    Journal of natural products, 2001, Volume: 64, Issue:4

    Topics: Catechin; Flavonoids; Flavonols; Hydroxylation; Methylation; Quercetin; Spectrum Analysis; Streptomyces

2001
Differential effects of quercetin, a natural polyphenolic flavonoid, on L-type calcium current in pituitary tumor (GH3) cells and neuronal NG108-15 cells.
    Journal of cellular physiology, 2003, Volume: 195, Issue:2

    Topics: Action Potentials; Animals; Calcium Channels, L-Type; Catechin; Cells, Cultured; Cyclic AMP; Enzyme Inhibitors; Flavones; Flavonoids; Flavonols; Membrane Potentials; Neurons; Pituitary Gland; Prolactin; Quercetin; Rats; tert-Butylhydroperoxide; Thionucleotides; Tumor Cells, Cultured

2003
Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids.
    Journal of bacteriology, 2007, Volume: 189, Issue:14

    Topics: Amino Acid Sequence; Bacillus subtilis; Bacterial Proteins; Base Sequence; Catechin; Dioxygenases; Disaccharides; DNA Footprinting; Electrophoretic Mobility Shift Assay; Flavonoids; Flavonols; Gene Expression Regulation, Bacterial; Lincomycin; Molecular Sequence Data; Molecular Structure; Oligonucleotide Array Sequence Analysis; Operon; Promoter Regions, Genetic; Protein Binding; Quercetin; Regulon; Repressor Proteins; Sequence Homology, Amino Acid

2007
Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties.
    Molecules (Basel, Switzerland), 2010, Nov-03, Volume: 15, Issue:11

    Topics: Antioxidants; Carbon Dioxide; Catechin; Chromatography, High Pressure Liquid; Cinnamates; Coumaric Acids; Flavanones; Flavonoids; Flavonols; Free Radical Scavengers; Gallic Acid; Hydroxybenzoates; Kaempferols; Malaysia; Phenols; Quercetin; Rutin; Salicylic Acid; Tannins; Vanillic Acid; Zingiber officinale

2010
Epigallocatechin-3-gallate does not affect the activity of enzymes involved in metabolic activation and cellular excretion of benzo[a]pyrene in human colon carcinoma cells.
    Toxicology letters, 2011, Jun-24, Volume: 203, Issue:3

    Topics: Benzo(a)pyrene; Biotransformation; Caco-2 Cells; Catechin; Cytochrome P-450 CYP1A1; Flavonoids; Flavonols; Glucuronosyltransferase; Humans; Receptors, Aryl Hydrocarbon; RNA, Messenger

2011
Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities.
    International journal of nanomedicine, 2014, Volume: 9

    Topics: Antioxidants; Apoptosis; Catechin; Cell Line, Tumor; Cell Proliferation; Drug Stability; Flavonoids; Flavonols; Gold; Green Chemistry Technology; Humans; Metal Nanoparticles; Polyphenols; Resveratrol; Stilbenes

2014
Inhibitory mechanism of five natural flavonoids against murine norovirus.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2017, Jul-01, Volume: 30

    Topics: Animals; Antiviral Agents; Catechin; Cell Line; Cytokines; Drug Evaluation, Preclinical; Flavonoids; Flavonols; Gene Expression Regulation; Interleukin-6; Isoflavones; Mice; Nitric Oxide Synthase Type II; Norovirus; Quercetin; Up-Regulation; Virus Replication

2017