avapro and pioglitazone

avapro has been researched along with pioglitazone in 11 studies

Research

Studies (11)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (18.18)29.6817
2010's6 (54.55)24.3611
2020's3 (27.27)2.80

Authors

AuthorsStudies
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Aleo, MD; Bonin, PD; Luo, Y; Potter, DM; Swiss, R; Will, Y1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Gust, R; Obexer, P; Salcher, S; Schoepf, AM1
Norman, BH1
Clemenz, M; Gineste, R; Helleboid, S; Hennuyer, N; Janke, J; Kintscher, U; Ruiz, P; Schupp, M; Staels, B; Unger, T; Witt, H1
Boschmann, M; Engeli, S; Gorzelniak, K; Janke, J; Jordan, J; Luft, FC; Nystrom, FH; Sauma, L; Schupp, M; Sharma, AM1
Jin, D; Miyazaki, M; Takai, S1
Abdelhafez, AT; Ahmed, AM; Ahmed, MA; Gomaa, AMS; Sayed, MM1

Reviews

2 review(s) available for avapro and pioglitazone

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Drug Induced Liver Injury (DILI). Mechanisms and Medicinal Chemistry Avoidance/Mitigation Strategies.
    Journal of medicinal chemistry, 2020, 10-22, Volume: 63, Issue:20

    Topics: Animals; Cell Line; Cell Survival; Chemical and Drug Induced Liver Injury; Drug Discovery; Drug Evaluation, Preclinical; Hepatocytes; Humans; Liver; Mitochondria, Liver; Pharmaceutical Preparations; Risk Assessment; Tissue Distribution

2020

Other Studies

9 other study(ies) available for avapro and pioglitazone

ArticleYear
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump.
    Hepatology (Baltimore, Md.), 2014, Volume: 60, Issue:3

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Chemical and Drug Induced Liver Injury; Humans; Male; Mitochondria, Liver; Rats; Rats, Sprague-Dawley; Severity of Illness Index

2014
Identification and development of non-cytotoxic cell death modulators: Impact of sartans and derivatives on PPARγ activation and on growth of imatinib-resistant chronic myelogenous leukemia cells.
    European journal of medicinal chemistry, 2020, Jun-01, Volume: 195

    Topics: Animals; Cell Death; Cell Proliferation; Chlorocebus aethiops; COS Cells; Drug Design; Drug Resistance, Neoplasm; Humans; Imatinib Mesylate; K562 Cells; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; PPAR gamma; Structure-Activity Relationship; Telmisartan

2020
Molecular characterization of new selective peroxisome proliferator-activated receptor gamma modulators with angiotensin receptor blocking activity.
    Diabetes, 2005, Volume: 54, Issue:12

    Topics: 3T3 Cells; Acrylates; Adipocytes; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzimidazoles; Benzoates; Biphenyl Compounds; Cell Differentiation; Chlorocebus aethiops; COS Cells; Gene Expression Regulation; Imidazoles; Irbesartan; Mice; Pioglitazone; PPAR gamma; Protein Conformation; Telmisartan; Tetrazoles; Thiazolidinediones; Thiophenes

2005
Angiotensin type 1 receptor antagonists induce human in-vitro adipogenesis through peroxisome proliferator-activated receptor-gamma activation.
    Journal of hypertension, 2006, Volume: 24, Issue:9

    Topics: Adipogenesis; Adiponectin; Adipose Tissue; Angiotensin II Type 1 Receptor Blockers; Benzimidazoles; Benzoates; Biphenyl Compounds; Humans; Irbesartan; Lipoprotein Lipase; Losartan; Luciferases; Male; Pioglitazone; PPAR gamma; Receptor, Angiotensin, Type 1; RNA, Messenger; Telmisartan; Tetrazoles; Thiazolidinediones

2006
Irbesartan prevents metabolic syndrome in rats via activation of peroxisome proliferator-activated receptor γ.
    Journal of pharmacological sciences, 2011, Volume: 116, Issue:3

    Topics: Adiponectin; Adipose Tissue; Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Biphenyl Compounds; Gene Expression Regulation; Glucose Transporter Type 4; Hypertension; Hypertriglyceridemia; Hypoglycemic Agents; Insulin Resistance; Irbesartan; Male; Metabolic Syndrome; Pioglitazone; PPAR gamma; Rats; Rats, Inbred SHR; RNA, Messenger; Tetrazoles; Thiazolidinediones; Valine; Valsartan

2011
Pioglitazone and/or irbesartan ameliorate COPD-induced endothelial dysfunction in side stream cigarette smoke-exposed mice model.
    Life sciences, 2021, Sep-01, Volume: 280

    Topics: Animals; Antihypertensive Agents; Cigarette Smoking; Disease Models, Animal; Endothelium; Hypoglycemic Agents; Irbesartan; Lung; Male; Mice; Pioglitazone; Pulmonary Disease, Chronic Obstructive; Smoke

2021
chemdatabank.com