anticodon has been researched along with kethoxal* in 4 studies
4 other study(ies) available for anticodon and kethoxal
Article | Year |
---|---|
Photoaffinity polyamines: interactions with AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli ribosomes.
Two photoreactive derivatives of spermine, azidobenzamidino (ABA)-spermine and azidonitrobenzoyl (ANB)-spermine, were used for mapping of polyamine binding sites in AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli poly(U)-programmed ribosomes. Partial nuclease digestion indicated that the deep pocket formed by nucleosides of the D-stem and the variable loop, as well as the anticodon stem, are preferable polyamine binding sites for AcPhe-tRNA in the free state. ABA-spermine was a stronger cross-linker than ANB-spermine. Both photoprobes were linked to AcPhe-tRNA with higher affinity when the latter was non-enzymatically bound to poly(U)-programmed ribosomes. In particular, the cross-linking at the TpsiC stem and acceptor stem was substantially promoted. The photolabeled AcPhe-tRNA.poly(U).ribosome complex exhibited moderate reactivity towards puromycin. The attachment of photoprobes to AcPhe-tRNA was mainly responsible for this defect. A more complicated situation was revealed when the AcPhe-tRNA.poly(U).ribosome complex was formed in the presence of translation factors; the reactivity towards puromycin was stimulated by irradiating such a complex in the presence of photoprobes at 50 microM, with higher concentrations being inhibitory. The stimulatory effect was closely related with the binding of photoprobes to ribosomes. The results are discussed on the basis of possible AcPhe-tRNA conformational changes induced by the incorporation of photoprobes. Topics: Aldehydes; Anticodon; Binding Sites; Butanones; Catalysis; Escherichia coli; Kinetics; Molecular Probes; Nucleic Acid Conformation; Peptides; Peptidyl Transferases; Photoaffinity Labels; Poly U; Protein Biosynthesis; Puromycin; Ribosomes; RNA, Bacterial; RNA, Transfer; Solubility; Solutions; Spermine; Thermodynamics | 2000 |
Single atom modification (O-->S) of tRNA confers ribosome binding.
Escherichia coli tRNALysSUU, as well as human tRNALys3SUU, has 2-thiouridine derivatives at wobble position 34 (s2U*34). Unlike the native tRNALysSUU, the full-length, unmodified transcript of human tRNALys3UUU and the unmodified tRNALys3UUU anticodon stem/loop (ASLLys3UUU) did not bind AAA- or AAG-programmed ribosomes. In contrast, the completely unmodified yeast tRNAPhe anticodon stem/loop (ASLPheGAA) had an affinity (Kd = 136+/-49 nM) similar to that of native yeast tRNAPheGmAA (Kd = 103+/-19 nM). We have found that the single, site-specific substitution of s2U34 for U34 to produce the modified ASLLysSUU was sufficient to restore ribosomal binding. The modified ASLLysSUU bound the ribosome with an affinity (Kd = 176+/-62 nM) comparable to that of native tRNALysSUU (Kd = 70+/-7 nM). Furthermore, in binding to the ribosome, the modified ASLLys3SUU produced the same 16S P-site tRNA footprint as did native E. coli tRNALysSUU, yeast tRNAPheGmAA, and the unmodified ASLPheGAA. The unmodified ASLLys3UUU had no footprint at all. Investigations of thermal stability and structure monitored by UV spectroscopy and NMR showed that the dynamic conformation of the loop of modified ASLLys3SUU was different from that of the unmodified ASLLysUUU, whereas the stems were isomorphous. Based on these and other data, we conclude that s2U34 in tRNALysSUU and in other s2U34-containing tRNAs is critical for generating an anticodon conformation that leads to effective codon interaction in all organisms. This is the first example of a single atom substitution (U34-->s2U34) that confers the property of ribosomal binding on an otherwise inactive tRNA. Topics: Aldehydes; Anticodon; Butanones; Escherichia coli; Humans; Magnetic Resonance Spectroscopy; Nucleic Acid Conformation; Nucleic Acid Denaturation; Nucleic Acid Hybridization; Ribosomes; RNA, Fungal; RNA, Transfer, Lys; Spectrum Analysis; Temperature; Thiouridine | 1999 |
Orientation of the tRNA anticodon in the ribosomal P-site: quantitative footprinting with U33-modified, anticodon stem and loop domains.
Binding of transfer RNA (tRNA) to the ribosome involves crucial tRNA-ribosomal RNA (rRNA) interactions. To better understand these interactions, U33-substituted yeast tRNA(Phe) anticodon stem and loop domains (ASLs) were used as probes of anticodon orientation on the ribosome. Orientation of the anticodon in the ribosomal P-site was assessed with a quantitative chemical footprinting method in which protection constants (Kp) quantify protection afforded to individual 16S rRNA P-site nucleosides by tRNA or synthetic ASLs. Chemical footprints of native yeast tRNA(Phe), ASL-U33, as well as ASLs containing 3-methyluridine, cytidine, or deoxyuridine at position 33 (ASL-m3U33, ASL-C33, and ASL-dU33, respectively) were compared. Yeast tRNAPhe and the ASL-U33 protected individual 16S rRNA P-site nucleosides differentially. Ribosomal binding of yeast tRNA(Phe) enhanced protection of C1400, but the ASL-U33 and U33-substituted ASLs did not. Two residues, G926 and G1338 with KpS approximately 50-60 nM, were afforded significantly greater protection by both yeast tRNA(Phe) and the ASL-U33 than other residues, such as A532, A794, C795, and A1339 (KpS approximately 100-200 nM). In contrast, protections of G926 and G1338 were greatly and differentially reduced in quantitative footprints of U33-substituted ASLs as compared with that of the ASL-U33. ASL-m3U33 and ASL-C33 protected G530, A532, A794, C795, and A1339 as well as the ASL-U33. However, protection of G926 and G1338 (KpS between 70 and 340 nM) was significantly reduced in comparison to that of the ASL-U33 (43 and 61 nM, respectively). Though protections of all P-site nucleosides by ASL-dU33 were reduced as compared to that of the ASL-U33, a proportionally greater reduction of G926 and G1338 protections was observed (KpS = 242 and 347 nM, respectively). Thus, G926 and G1338 are important to efficient P-site binding of tRNA. More importantly, when tRNA is bound in the ribosomal P-site, G926 and G1338 of 16S rRNA and the invariant U33 of tRNA are positioned close to each other. Topics: Aldehydes; Anticodon; Antiviral Agents; Base Sequence; Butanones; Dose-Response Relationship, Drug; Genetic Techniques; Kinetics; Molecular Sequence Data; Mutagens; Ribosomes; RNA, Fungal; RNA, Ribosomal, 16S; RNA, Transfer; RNA, Transfer, Phe; Sulfuric Acid Esters; Temperature | 1999 |
Chemical modification analysis of ion-dependent changes in the solution structure of yeast phenylalanine transfer ribonucleic acid.
Topics: Aldehydes; Anticodon; Butanones; Carbodiimides; Diffusion; Magnesium; Models, Chemical; Nucleic Acid Conformation; Osmolar Concentration; RNA, Transfer, Amino Acyl; Saccharomyces cerevisiae | 1982 |