alanine and fg 9041

alanine has been researched along with fg 9041 in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's4 (57.14)18.2507
2000's2 (28.57)29.6817
2010's1 (14.29)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Black, IB; Dreyfus, CF; Mount, HT1
Averill, DB; Tsuchihashi, T1
Cardoso, LF; Martini, LH; Souza, DO; Tasca, CI; Vendite, D1
Fleischer-Lambropoulos, E; Geladopoulos, T; Kazazoglou, T; Kentroti, S; Stefanis, C; Vernadakis, A1
Randich, A; Turnbach, ME1
Dolman, NP; Ghosal, A; Jane, DE; Mayer, ML1
Kallinen, SA; Kontturi, LS; Salonen, V; Uusi-Oukari, M1

Other Studies

7 other study(ies) available for alanine and fg 9041

ArticleYear
Purkinje cell survival is differentially regulated by metabotropic and ionotropic excitatory amino acid receptors.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1993, Volume: 13, Issue:7

    Topics: 2-Amino-5-phosphonovalerate; Alanine; Animals; Cell Survival; Cells, Cultured; Cyclopentanes; Dizocilpine Maleate; Embryo, Mammalian; gamma-Aminobutyric Acid; Kinetics; Purkinje Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Receptors, N-Methyl-D-Aspartate

1993
Metabotropic glutamate receptors in the ventrolateral medulla of rats.
    Hypertension (Dallas, Tex. : 1979), 1993, Volume: 21, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; Alanine; Amino Acids; Animals; Blood Pressure; Cycloleucine; Dose-Response Relationship, Drug; Drug Combinations; Male; Medulla Oblongata; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Stimulation, Chemical

1993
Modulation of adenosine-induced cAMP accumulation via metabotropic glutamate receptors in chick optic tectum.
    Neurochemical research, 1995, Volume: 20, Issue:9

    Topics: Adenosine; Alanine; Animals; Benzoates; Chickens; Cyclic AMP; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; In Vitro Techniques; Male; Quinoxalines; Receptors, Metabotropic Glutamate; Superior Colliculi

1995
Stimulation of glutamine synthetase activity by excitatory amino acids in astrocyte cultures derived from aged mouse cerebral hemispheres may be associated with non-N-methyl-D-aspartate receptor activation.
    International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, 1996, Volume: 14, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Aging; Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Astrocytes; Cell Division; Cells, Cultured; Cerebral Cortex; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acids; Glutamate-Ammonia Ligase; Glutamic Acid; Mice; N-Methylaspartate; Neurotoxins; Quinoxalines; Receptors, N-Methyl-D-Aspartate

1996
The role of spinal neurokinin-1 and glutamate receptors in hyperalgesia and allodynia induced by prostaglandin E(2) or zymosan in the rat.
    Pain, 2002, Volume: 97, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Alanine; Animals; Dinoprostone; Excitatory Amino Acid Antagonists; Hyperalgesia; Male; Neurokinin-1 Receptor Antagonists; Piperidines; Quinoxalines; Quinuclidines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurokinin-1; Spinal Cord; Zymosan

2002
Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, Mar-15, Volume: 26, Issue:11

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Crystallography, X-Ray; Excitatory Amino Acid Antagonists; GluK2 Kainate Receptor; Glutamic Acid; Hydrogen Bonding; Models, Molecular; Oocytes; Patch-Clamp Techniques; Protein Binding; Protein Conformation; Quinoxalines; Rats; Receptors, AMPA; Receptors, Kainic Acid; Recombinant Fusion Proteins; Thymine; Xenopus laevis

2006
AMPA receptors serum-dependently mediate GABAA receptor alpha1 and alpha6 subunit down-regulation in cultured mouse cerebellar granule cells.
    Neurochemistry international, 2010, Volume: 56, Issue:5

    Topics: Alanine; Animals; Cells, Cultured; Cerebellum; Coloring Agents; Culture Media, Serum-Free; Down-Regulation; GABA Agonists; GABA Antagonists; GABA-A Receptor Antagonists; GluK2 Kainate Receptor; Kainic Acid; Mice; Neurons; Protein Binding; Pyrimidinones; Quinoxalines; Receptors, AMPA; Receptors, GABA-A; Receptors, Kainic Acid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tetrazolium Salts; Thiazoles

2010