abt-594 and cytisine
abt-594 has been researched along with cytisine* in 2 studies
Other Studies
2 other study(ies) available for abt-594 and cytisine
Article | Year |
---|---|
Structure-activity studies related to ABT-594, a potent nonopioid analgesic agent: effect of pyridine and azetidine ring substitutions on nicotinic acetylcholine receptor binding affinity and analgesic activity in mice.
Analogs of A-98593 (1) and its enantiomer ABT-594 (2) with diverse substituents on the pyridine ring were prepared and tested for affinity to nicotinic acetylcholine receptor binding sites in rat brain and for analgesic activity in the mouse hot plate assay. Numerous types of modifications were consistent with high affinity for [3H]cytisine binding sites. By contrast, only selected modifications resulted in retention of analgesic potency in the same range as 1 and 2. Analogs of 2 with one or two methyl substituents at the 3-position of the azetidine ring also were prepared and found to be substantially less active in both assays. Topics: Alkaloids; Analgesics, Non-Narcotic; Animals; Azetidines; Azocines; Binding Sites; Brain; Mice; Nicotinic Agonists; Pain Measurement; Pyridines; Quinolizines; Rats; Receptors, Nicotinic; Stereoisomerism; Structure-Activity Relationship; Tritium | 1998 |
ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I. In vitro characterization.
The discovery of (+/-)-epibatidine, a naturally occurring neuronal nicotinic acetylcholine receptor (nAChR) agonist with antinociceptive activity 200-fold more potent than that of morphine, has renewed interest in the potential role of nAChRs in pain processing. However, (+/-)-epibatidine has significant side-effect liabilities associated with potent activity at the ganglionic and neuromuscular junction nAChR subtypes which limit its potential as a clinical entity. ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine] is a novel, potent cholinergic nAChR ligand with analgesic properties (see accompanying paper by Bannon et al., 1998b) that shows preferential selectivity for neuronal nAChRs and a consequently improved in vivo side-effect profile compared with (+/-)-epibatidine. ABT-594 is a potent inhibitor of the binding of [3H](-)-cytisine to alpha 4 beta 2 neuronal nAChRs (Ki = 37 pM, rat brain; Ki = 55 pM, transfected human receptor). At the alpha 1 beta 1 delta gamma neuromuscular nAChR labeled by [125I] alpha-bungarotoxin (alpha-Btx), ABT-594 has a Ki value of 10,000 nM resulting in a greater than 180,000-fold selectivity of the compound for the neuronal alpha 4 beta 2 nAChR. In contrast, (+/-)-epibatidine has Ki values of 70 pM and 2.7 nM at the alpha 4 beta 2 and alpha 1 beta 1 delta gamma nAChRs, respectively, giving a selectivity of only 38-fold. The S-enantiomer of ABT-594, A-98593 has activity at the neuronal alpha 4 beta 2 nAChR identical with ABT-594 (Ki = 34-39 pM), which demonstrates a lack of stereospecific binding similar to that reported previously for (+/-)-epibatidine. A similar lack of stereoselectivity is seen at the human alpha 7 receptor. However, A-98593 is 3-fold more potent at the neuromuscular nAChR (Ki = 3420 nM) and the brain alpha-Btx-sensitive nAChR (Ki = 4620 nM) than ABT-594. ABT-594 has weak affinity in binding assays for adrenoreceptor subtypes alpha-1B (Ki = 890 nM), alpha-2B (Ki = 597 nM) and alpha-2C (Ki = 342 nM), and it has negligible affinity (Ki > 1000 nM) for approximately 70 other receptors, enzyme and transporter binding sites. Functionally, ABT-594 is an agonist. At the transfected human alpha 4 beta 2 neuronal nAChR (K177 cells), with increased 86Rb+ efflux as a measure of cation efflux, ABT-594 had an EC50 value of 140 nM with an intrinsic activity (IA) compared with (-)-nicotine of 130%; at the nAChR subtype expressed in IMR-32 cells (sympathetic ganglion-like), an EC50 of 340 nM (IA = 126%); at the F11 d Topics: Administration, Oral; Alkaloids; Analgesics, Non-Narcotic; Animals; Azetidines; Azocines; Bridged Bicyclo Compounds, Heterocyclic; Bungarotoxins; Calcitonin Gene-Related Peptide; Calcium; Humans; Male; Nicotinic Agonists; Pyridines; Quinolizines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; Xenopus laevis | 1998 |