zn(ii)-phthalocyanine has been researched along with Disease-Models--Animal* in 4 studies
4 other study(ies) available for zn(ii)-phthalocyanine and Disease-Models--Animal
Article | Year |
---|---|
Monosubstituted tricationic Zn(II) phthalocyanine enhances antimicrobial photodynamic inactivation (aPDI) of methicillin-resistant
Antimicrobial photodynamic therapy (aPDT) is an innovative approach to combat multi-drug resistant bacteria. It is known that cationic Zn(II) phthalocyanines (ZnPc) are effective in mediating aPDT against methicillin-resistant Topics: Administration, Topical; Animals; Cell Line; Disease Models, Animal; Humans; Indoles; Isoindoles; Male; Methicillin-Resistant Staphylococcus aureus; Mice; Microbial Sensitivity Tests; Molecular Structure; Organometallic Compounds; Photochemotherapy; Photosensitizing Agents; Staphylococcal Infections; Zinc Compounds | 2020 |
Anti-Psoriasis Effects and Mechanisms of Α-(8-Quinolinoxy) Zinc Phthalocyanine-Mediated Photodynamic Therapy.
The aim of this study was to determine the anti-psoriasis effects of α-(8-quinolinoxy) zinc phthalocyanine (ZnPc-F7)-mediated photodynamic therapy (PDT) and to reveal its mechanisms.. HaCaT cells were used to observe the influence of ZnPc-F7-PDT on cell proliferation in vitro. The in vivo anti-psoriasis effects of ZnPc-F7-PDT were evaluated using a mouse vagina model, a propranolol-induced cavy psoriasis model and an imiquimod (IMQ)-induced nude mouse psoriasis model. Flow cytometry was carried out to determine T lymphocyte levels. Western blotting was performed to determine protein expression, and a reverse transcription-polymerase chain reaction test was performed to determine mRNA expression.. The results showed that ZnPc-F7-PDT significantly inhibited the proliferation of HaCaT cells in vitro; when the light doses were fixed, changing the irradiation time or output power had little influence on the inhibition rate. ZnPc-F7-PDT significantly inhibited the hyperproliferation of mouse vaginal epithelium induced by diethylstilbestrol and improved propranolol- and IMQ-induced psoriasis-like symptoms. ZnPc-F7-PDT inhibited IMQ-induced splenomegaly and T lymphocyte abnormalities. ZnPc-F7-PDT did not appear to change T lymphocytes in the mouse vagina model. ZnPc-F7-PDT down-regulated the expression of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-2 (Bcl-2), interleukin (IL)-17A mRNA and IL-17F mRNA, and up-regulated the expression of Bax.. In conclusion, ZnPc-F7-PDT exhibited therapeutic effects in psoriasis both in vitro and in vivo and is a potential approach in the treatment of psoriasis. Potential mechanisms of these effects included the inhibition of hyperproliferation; regulation of PCNA, Bcl-2, Bax, IL-17A mRNA and IL-17F mRNA expression; and immune regulation. Topics: Aminoquinolines; Animals; Cell Line; Cell Proliferation; Disease Models, Animal; Epidermis; Epithelial Cells; Female; Guinea Pigs; Humans; Imiquimod; Indoles; Interleukin-17; Isoindoles; Lasers; Male; Mice; Mice, Inbred ICR; Mice, Nude; Organometallic Compounds; Photochemotherapy; Photosensitizing Agents; Propranolol; Psoriasis; Zinc Compounds | 2017 |
Nanostructures of an amphiphilic zinc phthalocyanine polymer conjugate for photodynamic therapy of psoriasis.
Psoriasis is a chronic inflammatory skin disease affecting 2-5% of the population worldwide and it severely affects patient quality of life. In this study, an amphiphilic zinc phthalocyanine polymer conjugate (ZPB) was synthesized, in which zinc phthalocyanine (ZnPc) was conjugated with the poly(ethylene glycol) (PEG) chain of Brij 58. ZPB showed two maximum UV-vis absorption wavelengths, 348 nm and 678 nm. A monomolecular micelle of ZPB formed in water with a mean size of 25 nm and zeta potential of -15 mV. The nanostructures aggregated into cloudy precipitates, which were easily dispersed. The nanostructure showed the shell-core structure with the ZnPc segments as the core and the PEG chains as the shell. The anti-psoriasis effect of the ZPB nanostructure was explored using a guinea pig psoriasis model. After comparing the anti-psoriasis effects of saline, light alone, ZPB alone, and the combination of light and ZPB, the combination of light and ZPB showed the best photodynamic therapy of psoriasis based on the light excitation of the photosensitizer ZPB and the psoriasis was nearly cured according to the histopathological investigation. The ZPB nanostructure is a promising anti-psoriasis nanomedicine based on photodynamic therapy. Topics: Animals; Cetomacrogol; Disease Models, Animal; Drug Carriers; Guinea Pigs; Humans; Indoles; Isoindoles; Male; Micelles; Nanostructures; Organometallic Compounds; Photochemotherapy; Photosensitizing Agents; Psoriasis; Ultraviolet Rays; Water; Zinc Compounds | 2015 |
Local photodynamic therapy with Zn(II)-phthalocyanine in an experimental model of intimal hyperplasia.
Photodynamic therapy (PDT) appears to be a novel promising modality to prevent intimal hyperplasia (IH) and restenosis after angioplasty. Local PDT, that consists of local delivery of photosensitizing agents followed by intraluminal local irradiation, represents a recent advancement. This methodology requires optimization in order to achieve the best prompt outcome especially in terms of pharmacokinetics of the photosensitizing agent. We studied the pharmacokinetic properties by using the photosensitizing agent Zn(II)-phthalocyanine (ZnPc), locally released by a channeled balloon. The efficacy of local PDT in reducing IH was evaluated in an experimental rabbit model of arterial injury. The maximum accumulation of ZnPc was found at 30 min: the injured portion of the artery gave a ZnPc recovery of 1.18 micromol/mg, as compared with undetectable amounts of ZnPc in the non injured arteries; within 90 min after the local delivery, clearance of the agent was almost complete. Local PDT produced an effective reduction of IH in our vascular injury model: at 7, 14, 21 and 28 days IH and intima/media ratio (IMR) was significantly reduced as compared with balloon injured arteries. The local delivery of ZnPc showed favourable pharmacokinetic properties, that allow the performance of PDT immediately after the vascular injury. Local PDT performed in these conditions represents a promising approach to prevent IH after balloon injury. Further studies are needed to better clarify the biological response of the injured arterial wall to local PDT. Topics: Animals; Disease Models, Animal; Femoral Artery; Hyperplasia; Iliac Artery; Indoles; Isoindoles; Male; Organometallic Compounds; Photochemotherapy; Photosensitizing Agents; Rabbits; Zinc Compounds | 2000 |