zk-219477 and Disease-Models--Animal

zk-219477 has been researched along with Disease-Models--Animal* in 1 studies

Trials

1 trial(s) available for zk-219477 and Disease-Models--Animal

ArticleYear
The anti-tumor agent sagopilone shows antiresorptive effects both in vitro and in vivo.
    Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 2011, Volume: 22, Issue:11

    Sagopilone, a fully synthetic epothilone and very potent anti-tumor agent, has proved to be efficient in inhibiting bone destruction and tumor burden in a mouse model of breast cancer bone metastasis. In addition to its antiproliferative effects, this study shows direct effects of sagopilone on bone resorption and osteoclast activity.. Sagopilone, a novel fully synthetic third-generation epothilone, has proved to be efficient in inhibiting bone destruction and tumor burden in a mouse model of breast cancer bone metastasis. The aim of this study was to investigate whether the effect was primarily due to sagopilone's antiproliferative effect and consequent inhibition of tumor cell growth, or if sagopilone exerts direct effects on bone resorption and osteoclast activity.. Sagopilone was studied and compared to paclitaxel in vitro in human osteoclast differentiation and activity cultures. For studying the potential of sagopilone for inhibiting bone resorption in vivo, a mouse model of ovariectomy (ovx)-induced osteoporosis was utilized.. Sagopilone inhibited osteoclast differentiation and activity more efficiently than paclitaxel and showed less cytotoxicity. Whereas sagopilone showed inhibitory effects on human osteoclast differentiation and activity already at 5 and 15 nM, respectively, paclitaxel started to show effects only at 20 and 100 nM concentrations, respectively. Sagopilone treatment increased BMD In the mouse ovx model even though a non-optimized dose was used which is effective in tumor-bearing mice.. This is the first study to evaluate sagopilone's effects on bone resorption in non-cancerous situation. The evidence that sagopilone is beneficial for bone will strengthen the status of sagopilone as an anti-cancer compound compared to other microtubule stabilizing agents.

    Topics: Animals; Benzothiazoles; Bone Density; Bone Resorption; Disease Models, Animal; Epothilones; Female; Humans; Mice; Osteoclasts; Osteoporosis; Ovariectomy; Paclitaxel; Tubulin Modulators

2011