zk-216348 and Disease-Models--Animal

zk-216348 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for zk-216348 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Beneficial pharmacological effects of selective glucocorticoid receptor agonist in external eye diseases.
    Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics, 2011, Volume: 27, Issue:4

    Glucocorticoids exert their actions via the glucocorticoid receptor through at least 2 intracellular mechanisms, known as transrepression and transactivation. It has been hypothesized that transrepression is the basis of their anti-inflammatory effects, whereas transactivation has been assumed to cause their side effects. ZK209614, a recently identified, novel selective glucocorticoid receptor agonist, exerts strong transrepression and weak transactivation. The objective of this study was to determine whether its pharmacological effects can be dissociated from its side effects. For this, we employed in vitro assays and topical in vivo models.. ZK209614 and dexamethasone were used in in vitro transrepression and transactivation assays. To evaluate anti-inflammatory and antiallergic activities in vivo, ZK209614 and betamethasone phosphate were tested in the carrageenan-induced conjunctivitis model and allergic conjunctivitis model in rats. To evaluate side effects in vivo, treatments with ZK209614 and betamethasone phosphate were tested for the ocular hypertensive effects in a feline model, each drug being administered topically.. ZK209614 showed strong transrepression and weak transactivation in the in vitro assays. When given as eyedrops, ZK209614 and betamethasone phosphate each had an inhibitory effect on edema weight in the rat carrageenan-induced conjunctivitis model. In the rat allergic conjunctivitis model, ZK209614 reduced the elevated vascular permeability at a concentration of 0.1%. In the feline intraocular pressure (IOP)-elevation experiment, topically administered betamethasone phosphate elevated IOP, but ZK209614 had no effect on IOP.. The present investigations suggest that ZK209614 eyedrops have both anti-inflammatory and antiallergic effects, but no unwanted IOP-elevating effect. On that basis, ZK209614 might be a promising candidate as an ophthalmic drug with a better therapeutic index than classic glucocorticoids.

    Topics: Administration, Topical; Animals; Anti-Inflammatory Agents; Benzofurans; Benzoxazines; Betamethasone; Carrageenan; Cats; Cell Line, Tumor; Cells, Cultured; Conjunctivitis; Conjunctivitis, Allergic; Dexamethasone; Disease Models, Animal; Glucocorticoids; Humans; Intraocular Pressure; Male; Ophthalmic Solutions; Rats; Rats, Inbred BN; Rats, Wistar; Receptors, Glucocorticoid; Toxicity Tests; Transcriptional Activation

2011