zj43 has been researched along with Disease-Models--Animal* in 9 studies
9 other study(ies) available for zj43 and Disease-Models--Animal
Article | Year |
---|---|
A role for the locus coeruleus in the analgesic efficacy of N-acetylaspartylglutamate peptidase (GCPII) inhibitors ZJ43 and 2-PMPA.
N-acetylaspartylglutamate (NAAG) is the third most prevalent and widely distributed neurotransmitter in the mammalian nervous system. NAAG activates a group II metabotropic glutamate receptor (mGluR3) and is inactivated by an extracellular enzyme, glutamate carboxypeptidase II (GCPII) in vivo. Inhibitors of this enzyme are analgesic in animal models of inflammatory, neuropathic and bone cancer pain. NAAG and GCPII are present in the locus coeruleus, a center for the descending noradrenergic inhibitory pain system. In the formalin footpad model, systemic treatment with GCPII inhibitors reduces both phases of the inflammatory pain response and increases release of spinal noradrenaline. This analgesic efficacy is blocked by systemic injection of a group II mGluR antagonist, by intrathecal (spinal) injection of an alpha 2 adrenergic receptor antagonist and by microinjection of an α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist directly into the contralateral locus coeruleus. Footpad inflammation increases release of glutamate in the contralateral locus coeruleus and systemic treatment with a GCPII inhibitor blocks this increase. Direct injection of GCPII inhibitors into the contralateral or ipsilateral locus coeruleus reduces both phases of the inflammatory pain response in a dose-dependent manner and the contralateral effect also is blocked by intrathecal injection of an alpha 2 adrenergic receptor antagonist. These data support the hypothesis that the analgesic efficacy of systemically administered GCPII inhibitors is mediated, at least in part, by the contralateral locus coeruleus via group II mGluR, AMPA and alpha 2 adrenergic receptors. Topics: Analgesics; Animals; Disease Models, Animal; Dopamine beta-Hydroxylase; Excitatory Amino Acid Agents; Formaldehyde; Glutamate Carboxypeptidase II; Glutamic Acid; Locus Coeruleus; Male; Norepinephrine; Organophosphorus Compounds; Pain; Rats; Rats, Sprague-Dawley; Urea | 2017 |
NAAG Peptidase Inhibitors Act via mGluR3: Animal Models of Memory, Alzheimer's, and Ethanol Intoxication.
Glutamate carboxypeptidase II (GCPII) inactivates the peptide neurotransmitter N-acetylaspartylglutamate (NAAG) following synaptic release. Inhibitors of GCPII increase extracellular NAAG levels and are efficacious in animal models of clinical disorders via NAAG activation of a group II metabotropic glutamate receptor. mGluR2 and mGluR3 knock-out (ko) mice were used to test the hypothesis that mGluR3 mediates the activity of GCPII inhibitors ZJ43 and 2-PMPA in animal models of memory and memory loss. Short- (1.5 h) and long- (24 h) term novel object recognition tests were used to assess memory. Treatment with ZJ43 or 2-PMPA prior to acquisition trials increased long-term memory in mGluR2, but not mGluR3, ko mice. Nine month-old triple transgenic Alzheimer's disease model mice exhibited impaired short-term novel object recognition memory that was rescued by treatment with a NAAG peptidase inhibitor. NAAG peptidase inhibitors and the group II mGluR agonist, LY354740, reversed the short-term memory deficit induced by acute ethanol administration in wild type mice. 2-PMPA also moderated the effect of ethanol on short-term memory in mGluR2 ko mice but failed to do so in mGluR3 ko mice. LY354740 and ZJ43 blocked ethanol-induced motor activation. Both GCPII inhibitors and LY354740 also significantly moderated the loss of motor coordination induced by 2.1 g/kg ethanol treatment. These data support the conclusion that inhibitors of glutamate carboxypeptidase II are efficacious in object recognition models of normal memory and memory deficits via an mGluR3 mediated process, actions that could have widespread clinical applications. Topics: Alcoholic Intoxication; Alzheimer Disease; Animals; Disease Models, Animal; Ethanol; Excitatory Amino Acid Antagonists; Glutamate Carboxypeptidase II; Male; Memory; Memory Disorders; Mice; Mice, 129 Strain; Mice, Knockout; Mice, Transgenic; Motor Activity; Receptors, Metabotropic Glutamate; Urea | 2017 |
NAAG peptidase inhibitors block cognitive deficit induced by MK-801 and motor activation induced by d-amphetamine in animal models of schizophrenia.
The most widely validated animal models of the positive, negative and cognitive symptoms of schizophrenia involve administration of d-amphetamine or the open channel NMDA receptor blockers, dizocilpine (MK-801), phencyclidine (PCP) and ketamine. The drug ZJ43 potently inhibits glutamate carboxypeptidase II (GCPII), an enzyme that inactivates the peptide transmitter N-acetylaspartylglutamate (NAAG) and reduces positive and negative behaviors induced by PCP in several of these models. NAAG is an agonist at the metabotropic glutamate receptor 3 (mGluR3). Polymorphisms in this receptor have been associated with expression of schizophrenia. This study aimed to determine whether two different NAAG peptidase inhibitors are effective in dopamine models, whether their efficacy was eliminated in GCPII knockout mice and whether the efficacy of these inhibitors extended to MK-801-induced cognitive deficits as assessed using the novel object recognition test. ZJ43 blocked motor activation when given before or after d-amphetamine treatment. (R,S)-2-phosphono-methylpentanedioic acid (2-PMPA), another potent NAAG peptidase inhibitor, also reduced motor activation induced by PCP or d-amphetamine. 2-PMPA was not effective in GCPII knockout mice. ZJ43 and 2-PMPA also blocked MK-801-induced deficits in novel object recognition when given before, but not after, the acquisition trial. The group II mGluR antagonist LY341495 blocked the effects of NAAG peptidase inhibition in these studies. 2-PMPA was more potent than ZJ43 in a test of NAAG peptidase inhibition in vivo. By bridging the dopamine and glutamate theories of schizophrenia with two structurally different NAAG peptidase inhibitors and demonstrating their efficacy in blocking MK-801-induced memory deficits, these data advance the concept that NAAG peptidase inhibition represents a potentially novel antipsychotic therapy. Topics: Analysis of Variance; Animals; Antipsychotic Agents; Dextroamphetamine; Disease Models, Animal; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Exploratory Behavior; Glutamate Carboxypeptidase II; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Organophosphorus Compounds; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Recognition, Psychology; Risperidone; Schizophrenia; Soman; Urea | 2012 |
Group II mGluR agonist LY354740 and NAAG peptidase inhibitor effects on prepulse inhibition in PCP and D-amphetamine models of schizophrenia.
Group II metabotropic glutamate receptor (mGluR) agonists represent a novel approach to the treatment of schizophrenia. Inasmuch as the peptide neurotransmitter N-acetylaspartylglutamate (NAAG) activates these receptors, NAAG peptidase inhibitors conceptually represent a parallel path toward development of new antipsychotic drugs. While group II agonists are effective in several animal models of schizophrenia, they are reported to lack efficacy in moderating the effects of phencyclidine (PCP) on prepulse inhibition of acoustic startle in animal models of sensory processing deficits found in this disorder.. The objective of this study was to re-examine the efficacy of a group II metabotropic glutamate agonist and NAAG peptidase inhibitors in prepulse inhibition models of schizophrenia across two strains of mice.. The method used was an assay to determine the efficacy of these drugs in moderating the reduction in prepulse inhibition of acoustic startle in mice treated with PCP and D: -amphetamine.. The group II agonist LY354740 (5 and 10 mg/kg) moderated the effects of PCP on prepulse inhibition of acoustic startle in DBA/2 but not C57BL/6 mice. In contrast, two NAAG peptidase inhibitors, ZJ43 (150 mg/kg) and 2-PMPA (50, 100, and 150 mg/kg), did not significantly affect the PCP-induced reduction in prepulse inhibition in either strain.. These data demonstrate that the efficacy of group II agonists in this model of sensory motor processing is strain-specific in mice. The difference between the effects of the group II agonist and the peptidase inhibitors in the DBA/2 mice may relate to the difference in efficacy of NAAG and the agonist at mGluR2. Topics: Animals; Bridged Bicyclo Compounds; Dextroamphetamine; Disease Models, Animal; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Glutamate Carboxypeptidase II; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Organophosphorus Compounds; Phencyclidine; Receptors, Metabotropic Glutamate; Reflex, Startle; Schizophrenia; Species Specificity; Urea | 2011 |
Post-injury administration of NAAG peptidase inhibitor prodrug, PGI-02776, in experimental TBI.
Traumatic brain injury (TBI) leads to a rapid and excessive increase in glutamate concentration in the extracellular milieu, which is strongly associated with excitotoxicity and neuronal degeneration. N-acetylaspartylglutamate (NAAG), a prevalent peptide neurotransmitter in the vertebrate nervous system, is released along with glutamate and suppresses glutamate release by actions at pre-synaptic metabotropic glutamate autoreceptors. Extracellular NAAG is hydrolyzed to N-acetylaspartate and glutamate by peptidase activity. In the present study PGI-02776, a newly designed di-ester prodrug of the urea-based NAAG peptidase inhibitor ZJ-43, was tested for neuroprotective potential when administered intraperitoneally 30 min after lateral fluid percussion TBI in the rat. Stereological quantification of hippocampal CA2-3 degenerating neurons at 24 h post injury revealed that 10 mg/kg PGI-02776 significantly decreased the number of degenerating neurons (p<0.05). Both average latency analysis of Morris water maze performance and assessment of 24-hour memory retention revealed significant differences between sham-TBI and TBI-saline. In contrast, no significant difference was found between sham-TBI and PGI-02776 treated groups in either analysis indicating an improvement in cognitive performance with PGI-02776 treatment. Histological analysis on day 16 post-injury revealed significant cell death in injured animals regardless of treatment. In vitro NAAG peptidase inhibition studies demonstrated that the parent compound (ZJ-43) exhibited potent inhibitory activity while the mono-ester (PGI-02749) and di-ester (PGI-02776) prodrug compounds exhibited moderate and weak levels of inhibitory activity, respectively. Pharmacokinetic assays in uninjured animals found that the di-ester (PGI-02776) crossed the blood-brain barrier. PGI-02776 was also readily hydrolyzed to both the mono-ester (PGI-02749) and the parent compound (ZJ-43) in both blood and brain. Overall, these findings suggest that post-injury treatment with the ZJ-43 prodrug PGI-02776 reduces both acute neuronal pathology and longer term cognitive deficits associated with TBI. Topics: Animals; Brain Injuries; Disease Models, Animal; Glutamate Carboxypeptidase II; Male; Mice; Mice, Inbred C57BL; Nerve Degeneration; Neuroprotective Agents; Neurotransmitter Agents; Protease Inhibitors; Rats; Rats, Sprague-Dawley; Urea | 2011 |
Endogenous N-acetylaspartylglutamate (NAAG) inhibits synaptic plasticity/transmission in the amygdala in a mouse inflammatory pain model.
The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is widely expressed throughout the vertebrate nervous system, including the pain processing neuraxis. Inhibitors of NAAG peptidases are analgesic in animal models of pain. However, the brain regions involved in NAAG's analgesic action have not been rigorously defined. Group II metabotropic glutamate receptors (mGluR2/3) play a role in pain processing in the laterocapsular part of the central nucleus of the amygdala (CeLC). Given the high concentration of NAAG in the amygdala and its activation of group II mGluRs (mGluR3 > mGluR2), this study was undertaken using the mouse formalin model of inflammatory pain to test the hypothesis that NAAG influences pain processing in the amygdala. Evoked excitatory postsynaptic currents (eEPSCs) were studied in neurons in the CeLC of mouse brain slices following stimulation of the spinoparabrachial amygdaloid afferents.. Application of a NAAG peptidase inhibitor, ZJ43, dose dependently inhibited the amplitude of the eEPSCs by up to 50% in control CeLC demonstrating the role of NAAG in regulation of excitatory transmission at this synapse. A group II mGluR agonist (SLx-3095-1) similarly inhibited eEPSC amplitude by about 30%. Both effects were blocked by the group II mGluR antagonist LY341495. ZJ43 was much less effective than SLx in reducing eEPSCs 24 hours post inflammation suggesting an inflammation induced reduction in NAAG release or an increase in the ratio of mGluR2 to mGluR3 expression. Systemic injection of ZJ43 proximal to the time of inflammation blocked peripheral inflammation-induced increases in synaptic transmission of this pathway 24 hrs later and blocked the induction of mechanical allodynia that developed by this time point.. The main finding of this study is that NAAG and NAAG peptidase inhibition reduce excitatory neurotransmission and inflammation-induced plasticity at the spinoparabrachial synapse within the pain processing pathway of the central amygdaloid nucleus. Topics: Amygdala; Animals; Behavior, Animal; Dipeptides; Disease Models, Animal; Excitatory Postsynaptic Potentials; Formaldehyde; Glutamate Carboxypeptidase II; Hyperalgesia; In Vitro Techniques; Inflammation; Mice; Models, Biological; Neuronal Plasticity; Nociceptors; Pain; Receptors, AMPA; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission; Urea | 2010 |
Phencyclidine and dizocilpine induced behaviors reduced by N-acetylaspartylglutamate peptidase inhibition via metabotropic glutamate receptors.
N-methyl-D-aspartate (NMDA) receptor open channel blockers phencyclidine (PCP) and dizocilpine (MK-801) elicit schizophrenia-like symptoms in humans and in animal models. Group II metabotropic glutamate receptor agonists reverse the behavioral effects of PCP and MK-801 in animal models. N-acetylaspartylglutamate (NAAG), the third most prevalent neurotransmitter in the mammalian nervous system, is a selective group II metabotropic glutamate receptor agonist. We previously reported that ZJ43, a potent inhibitor of the enzymes that inactivate synaptically released NAAG, reduced motor and stereotypic effects of PCP in the rat.. To confirm the efficacy of NAAG peptidase inhibition in decreasing motor behaviors induced by PCP and MK-801, ZJ43 was tested in additional schizophrenia models.. ZJ43 reduced MK-801-induced motor activation in a mouse model that has been used to characterize the efficacy of a wide range of pharmacotherapies for this human disorder. In a second mouse strain, the peptidase inhibitor reduced PCP-induced stereotypic movements. ZJ43 also reduced PCP-induced negative symptoms in a resident-intruder assay. The group II metabotropic glutamate receptor antagonist, LY341495, blocked the effect of NAAG peptidase inhibition in these mouse models of positive and negative PCP- and MK-801-induced behaviors. Additionally, LY341495 alone increased some PCP-induced behaviors suggesting that normal levels of NAAG act to moderate the effect of PCP via a group II mGluR.. These data support the proposal that NAAG peptidase inhibition and elevation of synaptic NAAG levels represent a new therapeutic approach to treating the positive and negative symptoms of schizophrenia that are modeled by open channel NMDA receptor antagonists. Topics: Agonistic Behavior; Analysis of Variance; Animals; Behavior, Animal; Disease Models, Animal; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Exploratory Behavior; Glutamate Carboxypeptidase II; Male; Mice; Phencyclidine; Receptors, Metabotropic Glutamate; Schizophrenia; Stereotyped Behavior; Urea | 2008 |
NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR.
Phencyclidine (PCP) administration elicits positive and negative symptoms that resemble those of schizophrenia and is widely accepted as a model for the study of this human disorder. Group II metabotropic glutamate receptor (mGluR) agonists have been reported to reduce the behavioral and neurochemical effects of PCP. The peptide neurotransmitter, N-acetylaspartylglutamate (NAAG), is a selective group II agonist. We synthesized and characterized a urea-based NAAG analogue, ZJ43. This novel compound is a potent inhibitor of enzymes, glutamate carboxypeptidase II (K(i) = 0.8 nM) and III (K(i) = 23 nM) that deactivate NAAG following synaptic release. ZJ43 (100 microM) does not directly interact with NMDA receptors or metabotropic glutamate receptors. Administration of ZJ43 significantly reduced PCP-induced motor activation, falling while walking, stereotypic circling behavior, and head movements. To test the hypothesis that this effect of ZJ43 was mediated by increasing the activation of mGluR3 via increased levels of extracellular NAAG, the group II mGluR selective antagonist LY341495 was co-administered with ZJ43 prior to PCP treatment. This antagonist completely reversed the effects of ZJ43. Additionally, LY341495 alone increased PCP-induced motor activity and head movements suggesting that normal levels of NAAG act to moderate the effect of PCP on motor activation via a group II mGluR. These data support the view that NAAG peptidase inhibitors may represent a new therapeutic approach to some of the components of schizophrenia that are modeled by PCP. Topics: Animals; Behavior, Animal; Cells, Cultured; Disease Models, Animal; Enzyme Inhibitors; Glutamate Carboxypeptidase II; Male; Motor Activity; Phencyclidine; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Schizophrenia; Stereotyped Behavior; Urea | 2004 |
Antinociceptive effects of N-acetylaspartylglutamate (NAAG) peptidase inhibitors ZJ-11, ZJ-17 and ZJ-43 in the rat formalin test and in the rat neuropathic pain model.
The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) acts as an agonist at group II metabotropic glutamate receptors (mGluRs). NAAG is inactivated by extracellular peptidase activity yielding glutamate and N-acetylaspartate. We recently developed a series of potent NAAG peptidase inhibitors, including ZJ-11, ZJ-17 and ZJ-43. In the present study, we examined the effects of intrathecally administered ZJ-11 and ZJ-17 and intravenously administered ZJ-11 and ZJ-43 in the rat formalin test (an inflammatory pain model) and in the rat partial sciatic nerve ligation model (a neuropathic pain model). Intrathecal injection of ZJ-11 or ZJ-17 or intravenous injection of ZJ-11 or ZJ-43 suppressed both phases of the agitation behaviour induced by paw formalin injection. Intrathecal and intravenous injection of ZJ-11 suppressed the expression of Fos-like immunoreactivity, induced by paw formalin injection, in laminae I-II in segments L4-L5 of the spinal cord, suggesting an action on sensory spinal transmission. Partial sciatic nerve ligation induced significant mechanical allodynia 7 days after the nerve injury. Intrathecal injection of ZJ-11 or ZJ-17 or intravenous administration of ZJ-11 or ZJ-43 attenuated the level of mechanical allodynia induced by this nerve ligation. These effects of intrathecally or intravenously administered ZJ compounds in both the formalin test and the partial sciatic nerve ligation model were completely antagonized by pretreatment with LY-341495, a highly selective group II mGluR antagonist. Thus, elevation of extracellular NAAG, induced by the inhibition of NAAG peptidase, activates group II mGluRs and produces an analgesic effect in neuropathic and inflammatory and pain models. In contrast, peptidase inhibition did not affect the threshold for withdrawal from a noxious mechanical stimulus or from an acute thermal stimulus in the hotplate test. Topics: Amino Acids; Analgesics; Animals; Behavior, Animal; Cell Line; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Excitatory Amino Acid Antagonists; Glutamate Carboxypeptidase II; Humans; Immunohistochemistry; Injections, Intravenous; Injections, Spinal; Nociceptors; Pain; Pain Measurement; Pain Threshold; Physical Stimulation; Protease Inhibitors; Proto-Oncogene Proteins c-fos; Rats; Reaction Time; Sciatic Neuropathy; Urea; Xanthenes | 2004 |