zithromax and Body-Weight

zithromax has been researched along with Body-Weight* in 17 studies

Trials

9 trial(s) available for zithromax and Body-Weight

ArticleYear
Effect of Mass Azithromycin Distributions on Childhood Growth in Niger: A Cluster-Randomized Trial.
    JAMA network open, 2021, 12-01, Volume: 4, Issue:12

    Mass azithromycin distributions may decrease childhood mortality, although the causal pathway is unclear. The potential for antibiotics to function as growth promoters may explain some of the mortality benefit.. To investigate whether biannual mass azithromycin distributions are associated with increased childhood growth.. This cluster-randomized trial was performed from December 2014 until March 2020 among 30 rural communities in Boboye and Loga departments in Niger, Africa, with populations from 200 to 2000 individuals. Communities were randomized in a 1:1 ratio to biannual mass distributions of azithromycin or placebo for children ages 1 to 59 months. Participants, field-workers, and study personnel were masked to treatment allocation. Height and weight changes from baseline to follow-up at 4 years were compared between groups. Data were analyzed from June through November 2021.. Participants received azithromycin at 20 mg/kg using height-based approximation or by weight for children unable to stand every 6 months at the participants' households. Placebo contained the vehicle of the azithromycin suspension.. Longitudinal anthropometric assessments were performed on a random sample of children before the first treatment and then annually for 5 years. Height and weight were the prespecified primary outcomes.. Among 3936 children enrolled from 30 communities, baseline characteristics were similar between 1299 children in the azithromycin group and 2637 children in the placebo group (mean 48.2% [95% CI, 45.5% to 50.8%] girls vs 48.0% [95% CI, 45.7% to 50.3%] girls; mean age, 30.8 months [95% CI, 29.5 to 32.0 months] vs 30.6 months [95% CI, 29.2 to 31.6 months]). Baseline anthropometric assessments were performed among 2230 children, including 985 children in the azithromycin group and 1245 children in the placebo group, of whom follow-up measurements were available for 789 children (80.1%) and 1063 children (85.4%), respectively. At the prespecified 4-year follow-up visit, children in the azithromycin group gained a mean 6.7 cm (95% CI, 6.5 to 6.8 cm) in height and 1.7 kg (95% CI, 1.7 to 1.8 kg) in weight per year and children in the placebo group gained a mean 6.6 cm (95% CI, 6.4 to 6.7 cm) in height and 1.7 kg (95% CI, 1.7 to 1.8 kg) in weight per year. Height at 4 years was not statistically significantly different between groups when adjusted for baseline height (0.08 cm [95% CI, -0.12 to 0.28 cm] greater in the azithromycin group; P = .45), and neither was weight when adjusted for height and baseline weight (0.02 kg [95% CI, -0.10 to 0.06 kg] less in the azithromycin group; P = .64). However, among children in the shortest quartile of baseline height, azithromycin was associated with a 0.4 cm (95% CI, 0.1 to 0.7 cm) increase in height compared with placebo.. This study did not find evidence of an association between mass azithromycin distributions and childhood growth, although subgroup analysis suggested some benefit for the shortest children. These findings suggest that the mortality benefit of mass azithromycin distributions is unlikely to be due solely to growth promotion.. ClinicalTrials.gov Identifier: NCT02048007.

    Topics: Anthropometry; Anti-Bacterial Agents; Azithromycin; Body Height; Body Weight; Child Mortality; Child, Preschool; Cluster Analysis; Female; Humans; Infant; Longitudinal Studies; Male; Niger; Rural Population; Treatment Outcome

2021
Baseline Characteristics of Study Participants in the Early Life Interventions for Childhood Growth and Development in Tanzania (ELICIT) Trial.
    The American journal of tropical medicine and hygiene, 2020, Volume: 103, Issue:4

    Recurrent enteric infections and micronutrient deficiencies, including deficiencies in the tryptophan-kynurenine-niacin pathway, have been associated with environmental enteric dysfunction, potentially contributing to poor child growth and development. We are conducting a randomized, placebo-controlled, 2 × 2 factorial interventional trial in a rural population in Haydom, Tanzania, to determine the effect of 1) antimicrobials (azithromycin and nitazoxanide) and/or 2) nicotinamide, a niacin vitamer, on attained length at 18 months. Mother/infant dyads were enrolled within 14 days of the infant's birth from September 2017 to September 2018, with the follow-up to be completed in February 2020. Here, we describe the baseline characteristics of the study cohort, risk factors for low enrollment weight, and neonatal adverse events (AEs). Risk factors for a low enrollment weight included being a firstborn child (-0.54 difference in weight-for-age

    Topics: Adult; Azithromycin; Body Weight; Child Health; Child Nutrition Disorders; Child, Preschool; Cohort Studies; Early Medical Intervention; Female; Humans; Infant; Infant, Newborn; Male; Mothers; Neonatal Sepsis; Niacinamide; Nitro Compounds; Poverty; Respiratory Tract Infections; Rural Population; Seasons; Surveys and Questionnaires; Tanzania; Thiazoles; Young Adult

2020
Biannual azithromycin distribution and child mortality among malnourished children: A subgroup analysis of the MORDOR cluster-randomized trial in Niger.
    PLoS medicine, 2020, Volume: 17, Issue:9

    Biannual azithromycin distribution has been shown to reduce child mortality as well as increase antimicrobial resistance. Targeting distributions to vulnerable subgroups such as malnourished children is one approach to reaching those at the highest risk of mortality while limiting selection for resistance. The objective of this analysis was to assess whether the effect of azithromycin on mortality differs by nutritional status.. A large simple trial randomized communities in Niger to receive biannual distributions of azithromycin or placebo to children 1-59 months old over a 2-year timeframe. In exploratory subgroup analyses, the effect of azithromycin distribution on child mortality was assessed for underweight subgroups using weight-for-age Z-score (WAZ) thresholds of -2 and -3. Modification of the effect of azithromycin on mortality by underweight status was examined on the additive and multiplicative scale. Between December 2014 and August 2017, 27,222 children 1-11 months of age from 593 communities had weight measured at their first study visit. Overall, the average age among included children was 4.7 months (interquartile range [IQR] 3-6), 49.5% were female, 23% had a WAZ < -2, and 10% had a WAZ < -3. This analysis included 523 deaths in communities assigned to azithromycin and 661 deaths in communities assigned to placebo. The mortality rate was lower in communities assigned to azithromycin than placebo overall, with larger reductions among children with lower WAZ: -12.6 deaths per 1,000 person-years (95% CI -18.5 to -6.9, P < 0.001) overall, -17.0 (95% CI -28.0 to -7.0, P = 0.001) among children with WAZ < -2, and -25.6 (95% CI -42.6 to -9.6, P = 0.003) among children with WAZ < -3. No statistically significant evidence of effect modification was demonstrated by WAZ subgroup on either the additive or multiplicative scale (WAZ < -2, additive: 95% CI -6.4 to 16.8, P = 0.34; WAZ < -2, multiplicative: 95% CI 0.8 to 1.4, P = 0.50, WAZ < -3, additive: 95% CI -2.2 to 31.1, P = 0.14; WAZ < -3, multiplicative: 95% CI 0.9 to 1.7, P = 0.26). The estimated number of deaths averted with azithromycin was 388 (95% CI 214 to 574) overall, 116 (95% CI 48 to 192) among children with WAZ < -2, and 76 (95% CI 27 to 127) among children with WAZ < -3. Limitations include the availability of a single weight measurement on only the youngest children and the lack of power to detect small effect sizes with this rare outcome. Despite the trial's large size, formal tests for effect modification did not reach statistical significance at the 95% confidence level.. Although mortality rates were higher in the underweight subgroups, this study was unable to demonstrate that nutritional status modified the effect of biannual azithromycin distribution on mortality. Even if the effect were greater among underweight children, a nontargeted intervention would result in the greatest absolute number of deaths averted.. The MORDOR trial is registered at clinicaltrials.gov NCT02047981.

    Topics: Anti-Bacterial Agents; Azithromycin; Body Weight; Child Mortality; Child Nutrition Disorders; Child, Preschool; Female; Humans; Infant; Infant Mortality; Malaria; Male; Mass Drug Administration; Niger; Nutritional Status; Thinness

2020
Neonatal azithromycin administration to prevent infant mortality: study protocol for a randomised controlled trial.
    BMJ open, 2019, 09-04, Volume: 9, Issue:9

    Biannual mass azithromycin distribution to children aged 1-59 months has been shown to reduce all-cause mortality. Children under 28 days of age were not treated in studies evaluating mass azithromycin distribution for child mortality due to concerns related to infantile hypertrophic pyloric stenosis (IHPS). Here, we report the design of a randomised controlled trial to evaluate the efficacy and safety of administration of a single dose of oral azithromycin during the neonatal period.. This study was approved by the Institutional Review Boards at the University of California, San Francisco in San Francisco, USA (Protocol #18-25027) and the Comité National d'Ethique pour la Recherche in Ouagadougou, Burkina Faso (Protocol #2018-10-123). The findings of this trial will be presented at local, regional and international meetings and published in open access peer-reviewed journals.. NCT03682653; Pre-results.

    Topics: Anti-Bacterial Agents; Azithromycin; Body Size; Body Weight; Child Development; Double-Blind Method; Humans; Infant; Infant Mortality; Infant, Newborn; Randomized Controlled Trials as Topic

2019
Linear growth in preschool children treated with mass azithromycin distributions for trachoma: A cluster-randomized trial.
    PLoS neglected tropical diseases, 2019, Volume: 13, Issue:6

    Mass azithromycin distributions have been shown to reduce mortality among pre-school children in sub-Saharan Africa. It is unclear what mediates this mortality reduction, but one possibility is that antibiotics function as growth promoters for young children.. 24 rural Ethiopian communities that had received biannual mass azithromycin distributions over the previous four years were enrolled in a parallel-group, cluster-randomized trial. Communities were randomized in a 1:1 ratio to either continuation of biannual oral azithromycin (20mg/kg for children, 1 g for adults) or to no programmatic antibiotics over the 36 months of the study period. All community members 6 months and older were eligible for the intervention. The primary outcome was ocular chlamydia; height and weight were measured as secondary outcomes on children less than 60 months of age at months 12 and 36. Study participants were not masked; anthropometrists were not informed of the treatment allocation. Anthropometric measurements were collected for 282 children aged 0-36 months at the month 12 assessment and 455 children aged 0-59 months at the month 36 assessment, including 207 children who had measurements at both time points. After adjusting for age and sex, children were slightly but not significantly taller in the biannually treated communities (84.0 cm, 95%CI 83.2-84.8, in the azithromycin-treated communities vs. 83.7 cm, 95%CI 82.9-84.5, in the untreated communities; mean difference 0.31 cm, 95%CI -0.85 to 1.47, P = 0.60). No adverse events were reported.. Periodic mass azithromycin distributions for trachoma did not demonstrate a strong impact on childhood growth.. The TANA II trial was registered on clinicaltrials.gov #NCT01202331.

    Topics: Animals; Anthropometry; Anti-Bacterial Agents; Azithromycin; Body Height; Body Weight; Chemoprevention; Child Development; Child, Preschool; Ethiopia; Female; Humans; Infant; Infant, Newborn; Male; Mass Drug Administration; Rural Population; Trachoma

2019
Does mass azithromycin distribution impact child growth and nutrition in Niger? A cluster-randomized trial.
    PLoS neglected tropical diseases, 2014, Volume: 8, Issue:9

    Antibiotic use on animals demonstrates improved growth regardless of whether or not there is clinical evidence of infectious disease. Antibiotics used for trachoma control may play an unintended benefit of improving child growth.. In this sub-study of a larger randomized controlled trial, we assess anthropometry of pre-school children in a community-randomized trial of mass oral azithromycin distributions for trachoma in Niger. We measured height, weight, and mid-upper arm circumference (MUAC) in 12 communities randomized to receive annual mass azithromycin treatment of everyone versus 12 communities randomized to receive biannual mass azithromycin treatments for children, 3 years after the initial mass treatment. We collected measurements in 1,034 children aged 6-60 months of age.. We found no difference in the prevalence of wasting among children in the 12 annually treated communities that received three mass azithromycin distributions compared to the 12 biannually treated communities that received six mass azithromycin distributions (odds ratio = 0.88, 95% confidence interval = 0.53 to 1.49).. We were unable to demonstrate a statistically significant difference in stunting, underweight, and low MUAC of pre-school children in communities randomized to annual mass azithromycin treatment or biannual mass azithromycin treatment. The role of antibiotics on child growth and nutrition remains unclear, but larger studies and longitudinal trials may help determine any association.

    Topics: Anti-Bacterial Agents; Azithromycin; Body Weight; Child Nutritional Physiological Phenomena; Child, Preschool; Cluster Analysis; Communicable Diseases; Female; Humans; Infant; Male; Niger; Nutritional Status; Thinness; Trachoma

2014
Azithromycin to prevent bronchopulmonary dysplasia in ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose.
    Antimicrobial agents and chemotherapy, 2013, Volume: 57, Issue:5

    Ureaplasma respiratory tract colonization is associated with bronchopulmonary dysplasia (BPD) in preterm infants. Previously, we demonstrated that a single intravenous (i.v.) dose of azithromycin (10 mg/kg of body weight) is safe but inadequate to eradicate Ureaplasma spp. in preterm infants. We performed a nonrandomized, single-arm open-label study of the pharmacokinetics (PK) and safety of intravenous 20-mg/kg single-dose azithromycin in 13 mechanically ventilated neonates with a gestational age between 24 weeks 0 days and 28 weeks 6 days. Pharmacokinetic data from 25 neonates (12 dosed with 10 mg/kg i.v. and 13 dosed with 20 mg/kg i.v.) were analyzed using a population modeling approach. Using a two-compartment model with allometric scaling of parameters on body weight (WT), the population PK parameter estimates were as follows: clearance, 0.21 liter/h × WT(kg)(0.75) [WT(kg)(0.75) indicates that clearance was allometrically scaled on body weight (in kilograms) with a fixed exponent of 0.75]; intercompartmental clearance, 2.1 liters/h × WT(kg)(0.75); central volume of distribution (V), 1.97 liters × WT (kg); and peripheral V, 17.9 liters × WT (kg). There was no evidence of departure from dose proportionality in azithromycin exposure over the tested dose range. The calculated area under the concentration-time curve over 24 h in the steady state divided by the MIC90 (AUC24/MIC90) for the single dose of azithromycin (20 mg/kg) was 7.5 h. Simulations suggest that 20 mg/kg for 3 days will maintain azithromycin concentrations of >MIC50 of 1 μg/ml for this group of Ureaplasma isolates for ≥ 96 h after the first dose. Azithromycin was well tolerated with no drug-related adverse events. One of seven (14%) Ureaplasma-positive subjects and three of six (50%) Ureaplasma-negative subjects developed physiologic BPD. Ureaplasma was eradicated in all treated Ureaplasma-positive subjects. Simulations suggest that a multiple-dose regimen may be efficacious for microbial clearance, but the effect on BPD remains to be determined.

    Topics: Anti-Bacterial Agents; Area Under Curve; Azithromycin; Body Weight; Bronchopulmonary Dysplasia; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Gestational Age; Humans; Infant, Newborn; Infant, Premature; Injections, Intravenous; Male; Microbial Sensitivity Tests; Models, Statistical; Respiratory System; Treatment Outcome; Ureaplasma

2013
Influence of body weight, ethnicity, oral contraceptives, and pregnancy on the pharmacokinetics of azithromycin in women of childbearing age.
    Antimicrobial agents and chemotherapy, 2012, Volume: 56, Issue:2

    Women of childbearing age commonly receive azithromycin for the treatment of community-acquired infections, including during pregnancy. This study determined azithromycin pharmacokinetics in pregnant and nonpregnant women and identified covariates contributing to pharmacokinetic variability. Plasma samples were collected by using a sparse-sampling strategy from pregnant women at a gestational age of 12 to 40 weeks and from nonpregnant women of childbearing age receiving oral azithromycin for the treatment of an infection. Pharmacokinetic data from extensive sampling conducted on 12 healthy women were also included. Plasma samples were assayed for azithromycin by high-performance liquid chromatography. Population data were analyzed by nonlinear mixed-effects modeling. The population analysis included 53 pregnant and 25 nonpregnant women. A three-compartment model with first-order absorption and a lag time provided the best fit of the data. Lean body weight, pregnancy, ethnicity, and the coadministration of oral contraceptives were covariates identified as significantly influencing the oral clearance of azithromycin and, except for oral contraceptive use, intercompartmental clearance between the central and second peripheral compartments. No other covariate relationships were identified. Compared to nonpregnant women not receiving oral contraceptives, a 21% to 42% higher dose-adjusted azithromycin area under the plasma concentration-time curve (AUC) occurred in non-African American women who were pregnant or receiving oral contraceptives. Conversely, azithromycin AUCs were similar between pregnant African American women and nonpregnant women not receiving oral contraceptives. Although higher levels of maternal and fetal azithromycin exposure suggest that lower doses be administered to non-African American women during pregnancy, the consideration of azithromycin pharmacodynamics during pregnancy should guide any dose adjustments.

    Topics: Adolescent; Adult; Area Under Curve; Azithromycin; Body Weight; Chromatography, High Pressure Liquid; Contraceptives, Oral; Ethnicity; Female; Gestational Age; Humans; Middle Aged; Pregnancy; Young Adult

2012
Long-term daily high and low doses of azithromycin in children with cystic fibrosis: a randomized controlled trial.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2010, Volume: 9, Issue:1

    Long-term administration of azithromycin (AZM) in children with cystic fibrosis (CF) has improved outcomes. However, the doses and schedule of administration are not very well studied in children with CF.. A randomized controlled trial was conducted to compare the effect of two doses of azithromycin (5mg/kg/day and 15mg/kg/day) on FEV(1) and pulmonary exacerbations in children with cystic fibrosis. Enrolled children were randomly allocated to receive daily azithromycin (5mg/kg/day or 15mg/kg/day) for 6months. Clinical assessment and FEV(1) measurement were performed monthly.. 56 children (28 in high dose group and 28 in low dose group) were enrolled. 47 (24 and 23 children in low and high dose groups) completed 12months of follow up. There was no difference in clinical scores, FEV(1), pulmonary exacerbation rates between two groups at baseline, 6months and at 12months. Per protocol analysis revealed that pulmonary exacerbation increased after discontinuing AZM and there was significantly more increase after 12months of enrolment in children getting high dose azithromycin. There was no improvement in FEV(1) in either group at the end of treatment period. Children tolerated daily low as well as high dose AZM well for 6months. There was no significant side effect of azithromycin.. In this randomized controlled trial, we did not find differences in the effect of 2 doses (5mg/kg/day or 15mg/kg/day) of AZM on change in percentage predicted FEV(1), clinical scores, Pseudomonas colonization rates, pulmonary exacerbations and need for antibiotics. There was increase in exacerbations after stopping azithromycin in both the groups. Our results also suggest that the decrease in the incidence of LRTI persists only till 6months after discontinuing azithromycin.

    Topics: Anti-Bacterial Agents; Azithromycin; Body Weight; Candidiasis; Child; Child, Preschool; Cystic Fibrosis; Female; Forced Expiratory Volume; Humans; Interleukin-8; Male; Pneumonia, Bacterial; Pseudomonas aeruginosa; Pseudomonas Infections; Spirometry; Sputum; Staphylococcal Infections; Staphylococcus aureus; Streptococcal Infections; Streptococcus pneumoniae; Treatment Outcome

2010

Other Studies

8 other study(ies) available for zithromax and Body-Weight

ArticleYear
Short- and long-term effects of orally administered azithromycin on Trypanosoma brucei brucei-infected mice.
    Experimental parasitology, 2019, Volume: 199

    Human African trypanosomosis (HAT) and animal African trypanosomosis (AAT) are diseases of economic importance in humans and animals that affect more than 36 African countries. The currently available trypanocidal drugs are associated with side effects, and the parasites are continually developing resistance. Thus, effective and safe drugs are needed for the treatment of HAT and AAT. This study aimed to evaluate the effects of azithromycin (AZM) on Trypanosoma brucei brucei-infected mice. Mice were randomly divided into 7 groups consisting of a vehicle control group, 5 test groups and a diminazene aceturate (DA)-treated group. Mice were treated orally for 7 and 28 days, as short-term and long-term treatments, respectively. Short-term AZM treatment cured 23% (16 of 70) of the overall treated mice whereas long-term treatment resulted in the survival of 70% of the mice in the groups that received AZM at doses of 300 and 400 mg/kg. Trypanosomes treated in vitro with 25 μg/mL of AZM were subjected to transmission electron microscopy, which revealed the presence of increased numbers of glycosomes and acidocalcisomes in comparison to the vehicle group. The current study showed the trypanocidal effect of AZM on T. b. brucei in vivo. The demonstrated efficacy increased with an increase in treatment period and an increased concentration of AZM.

    Topics: Administration, Oral; Animals; Anti-Infective Agents; Azithromycin; Body Weight; Female; Inhibitory Concentration 50; Mice; Mice, Inbred C57BL; Microscopy, Electron, Transmission; Parasitemia; Random Allocation; Survival Rate; Time Factors; Trypanosoma brucei brucei; Trypanosomiasis, African

2019
Long-lasting effect of oral azithromycin taken by women during labour on infant nutrition: Follow-up cohort of a randomized clinical trial in western Gambia.
    PloS one, 2018, Volume: 13, Issue:10

    To assess the effect of administering an oral dose of 2g of azithromycin in Gambian women during labour on infant growth.. Children whose mothers had been randomized to receive either an oral dose of 2g of azithromycin or placebo during labour were visited at home at the end of infancy by trained study nurses blind to the treatment allocation. The follow-up visit of these cohorts (exposed and non-exposed to azithromycin), which was not part of the original trial design, was conducted between November 2014 and May 2015 when the infants were 11 to 13 months of age. During visits, nurses recorded anthropometrical measurements and transcribed information from the infants' welfare cards.. Four-hundred and sixty-five (79.6%) of the 584 infants aged 11-13 months at the time of the survey were recruited. The proportion of children with an age-adjusted Z-score <-2SD for mid-upper-arm circumference (MUAC) was lower among those exposed to azithromycin [1.3% versus 6.3%, OR = 0.21 95%CI (0.06,0.72), p = 0.006] and there was weak evidence of a difference in the proportion of infants with weight-for-age (WAZ) Z-score <-2SD [7.1% versus 12.1%, OR = 0.58 95%CI (0.33,1.04), p = 0.065]. For all other malnutrition indicators the proportions were similar in the exposed and un-exposed cohort.. Our results show that azithromycin in labour may have a beneficial effect in MUAC among children who are below the curve. Larger studies with closer follow-up are warranted.. ClinicalTrials.gov Identifier NCT01800942.

    Topics: Administration, Oral; Azithromycin; Body Weight; Child Development; Female; Follow-Up Studies; Gambia; Humans; Infant; Infant Nutritional Physiological Phenomena; Pregnancy; Prenatal Exposure Delayed Effects; Randomized Controlled Trials as Topic

2018
Effects of oral florfenicol and azithromycin on gut microbiota and adipogenesis in mice.
    PloS one, 2017, Volume: 12, Issue:7

    Certain antibiotics detected in urine are associated with childhood obesity. In the current experimental study, we investigated two representative antibiotics detected in urine, florfenicol and azithromycin, for their early effects on adipogenesis, gut microbiota, short-chain fatty acids (SCFAs), and bile acids in mice. Thirty C57BL/6 mice aged four weeks were randomly divided into three groups (florfenicol, azithromycin and control). The two experimental groups were administered florfenicol or azithromycin at 5 mg/kg/day for four weeks. Body weight was measured weekly. The composition of the gut microbiota, body fat, SCFAs, and bile acids in colon contents were measured at the end of the experiment. The composition of the gut microbiota was determined by sequencing the bacterial 16S rRNA gene. The concentration of SCFAs and bile acids was determined using gas chromatography and liquid chromatography coupled to tandem mass spectrometry, respectively. The composition of the gut microbiota indicated that the two antibiotics altered the gut microbiota composition and decreased its richness and diversity. At the phylum level, the ratio of Firmicutes/Bacteroidetes increased significantly in the antibiotic groups. At the genus level, there were declines in Christensenella, Gordonibacter and Anaerotruncus in the florfenicol group, in Lactobacillus in the azithromycin group, and in Alistipes, Desulfovibrio, Parasutterella and Rikenella in both the antibiotic groups. The decrease in Rikenella in the azithromycin group was particularly noticeable. The concentration of SCFAs and secondary bile acids decreased in the colon, but the concentration of primary bile acids increased. These findings indicated that florfenicol and azithromycin increased adipogenesis and altered gut microbiota composition, SCFA production, and bile acid metabolism, suggesting that exposure to antibiotics might be one risk factor for childhood obesity. More studies are needed to investigate the specific mechanisms.

    Topics: Adipogenesis; Administration, Oral; Animals; Anti-Bacterial Agents; Azithromycin; Body Weight; Female; Gastrointestinal Microbiome; Male; Mice; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Thiamphenicol

2017
Determining the role of a probiotic in the restoration of intestinal microbial balance by molecular and cultural techniques.
    Genetics and molecular research : GMR, 2015, Feb-20, Volume: 14, Issue:1

    The human intestine has a vast variety of microorganisms, and their balance is dependent on several factors. Antibiotics affect microfloral balance and allow naturally opportunistic organisms to multiply. Azithromycin is the most widely used macrolide antibiotic, active against a wide number of pathogens including Pseudomonas aeruginosa and Staphylococcus aureus. It is currently used in the treatment of cystic fibrosis patients. The use of probiotics has advantages in gastrointestinal conditions, including infectious diarrhea and imbalance due to antibiotic use. In this research, the effect of azithromycin on the intestinal microbiota of Sprague Dawley rats and the role of Lactobacillus acidophilus in the restoration of the balance by employing molecular and cultural techniques was investigated. PCR with universal primers targeting the V3 region of the 16S rRNA gene followed by DGGE was used to characterize the overall intestinal microbiota composition. Cultivable fecal bacteria count using microbiological media and semi-quantitative PCR with group-specific primers were also utilized to analyze the effects of antibiotic and probiotic on microflora. We found that the total amount of 16S rRNA gene and fecal aerobic bacterial count was reduced following azithromycin administration along with elimination of non-pathogenic Escherichia coli, but it was restored by the use of the probiotic. The results from PCR with group-specific primers showed that Bacteroides sp was present in the control and probiotic groups, but it was nearly eliminated in the antibiotic group. Moreover, semi-quantitative PCR revealed that the numbers of Enterobacteriaceae were nearly the same in the probiotic group and decreased in the antibiotic group, while Bifidobacterium was significantly increased in the probiotic group and decreased in the antibiotic group (P < 0.05) as compared with that in the control group. Azithromycin-induced dysbiosis can result in prolonged deleterious effects on the host. The present study revealed that the use of lactic acid bacteria particularly L. acidophilus helped to restore intestinal microfloral balance.

    Topics: Animals; Azithromycin; Bifidobacterium; Body Weight; Colony Count, Microbial; Denaturing Gradient Gel Electrophoresis; Escherichia coli; Feces; Gastrointestinal Microbiome; Intestines; Lactobacillus acidophilus; Male; Polymerase Chain Reaction; Probiotics; Pseudomonas aeruginosa; Rats; Rats, Sprague-Dawley; RNA, Ribosomal, 16S; Staphylococcus aureus

2015
Azithromycin reduces pulmonary fibrosis in a bleomycin mouse model.
    Experimental lung research, 2010, Volume: 36, Issue:10

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease without proper treatment. Despite intensive research, the exact underlying pathogenesis remains elusive. It is regarded as a continuous injury, resulting in inflammation, infiltration, and proliferation of fibroblasts and extracellular matrix deposition, leading to an irreversible restrictive lung function deterioration and death. In this study the effect of azithromycin, a macrolide antibiotic on bleomycin-induced pulmonary fibrosis was investigated. C57BL/6 mice were intratracheally instilled with bleomycin (0.5 mg/kg) or saline. In the bleomycin group, half of the animals received azithromycin every other day from day 1 on. Bronchoalveolar lavage and histology were performed at days 7 and 35, and pulmonary function tests on day 35. At day 35, fibrotic lesions (spindle cell proliferation/collagen I deposition) were paralleled by a restrictive lung function pattern. Alterations were found in neutrophils and macrophages (innate immunity) and in T(H)2, T(H)17, and Treg cytokines (adaptive immunity). Azithromycin significantly reduced both fibrosis and the restrictive lung function pattern. This study demonstrated a beneficial effect of azithromycin on bleomycin-induced pulmonary fibrosis. A possible mechanism could be a modulation of both innate immunity and adaptive immunity. These findings might suggest a potential role for azithromycin in the treatment of IPF.

    Topics: Animals; Anti-Bacterial Agents; Azithromycin; Biomarkers; Bleomycin; Body Weight; Bronchoalveolar Lavage Fluid; CD4-Positive T-Lymphocytes; Cytokines; Disease Models, Animal; Drug Evaluation, Preclinical; Female; Idiopathic Pulmonary Fibrosis; Immunity, Innate; Leukocyte Count; Lung; Mice; Mice, Inbred C57BL; Respiratory Function Tests

2010
Antibiotic dosage in trachoma control programs: height as a surrogate for weight in children.
    Investigative ophthalmology & visual science, 2003, Volume: 44, Issue:4

    National programs for trachoma control are implementing mass treatment programs in which azithromycin is used as part of the control strategy. Dose is determined by weight, which can be difficult to determine in field conditions. The purposes of this study were to determine whether an accurate dose could be determined by using height as a surrogate for weight and whether a single model of height-based dosage would be applicable in more than one setting.. Data on height, weight, age, and gender of 5558 children aged 6 months to15 years were obtained from Kongwa and Rombo, Tanzania; Malakal, Sudan; Jareng, The Gambia; and Daboya, Ghana. Models for predicting weight by measuring height were developed that incorporated country-specific parameters. Doses of azithromycin assumed suspension of 40 mg/mL and 250-mg tablets that could be halved. Tolerance limits were defined as 15 to 30 mg/kg.. A regression model, predicting log weight as a function of log height, was the best fit and explained 94% of the variance. In children less than 1 year of age or 60 cm in height, dose determined by weight was preferred. Dosage by height resulted in more than 97% of children receiving doses within the tolerance limits. Children aged 1 to 2 years were the group most likely to be over- or undermedicated, but this occurred in only 6% of this age group.. Height-based determination of dosage of azithromycin in trachoma control programs appears to be feasible, using the height-based schedule proposed. One model was adequate for all the countries in the study. Further expansion to other countries is warranted.

    Topics: Adolescent; Africa; Age Distribution; Anti-Bacterial Agents; Azithromycin; Body Height; Body Mass Index; Body Weight; Child; Child, Preschool; Female; Humans; Infant; Male; Sex Distribution; Trachoma

2003
In vitro activity of gemifloxacin (SB-265805, LB20304a) against Legionella pneumophila and its pharmacokinetics in guinea pigs with L. pneumophila pneumonia.
    Antimicrobial agents and chemotherapy, 2001, Volume: 45, Issue:8

    The activity of gemifloxacin against intracellular Legionella pneumophila and for the treatment of guinea pigs with L. pneumophila pneumonia was studied. Gemifloxacin, azithromycin, and levofloxacin (1 microg/ml) reduced bacterial counts of two L. pneumophila strains grown in guinea pig alveolar macrophages by 2 to 3 log(10) units. Gemifloxacin and levofloxacin had roughly equivalent intracellular activities. In contrast, erythromycin had static activity only. Therapy studies of gemifloxacin, azithromycin, and levofloxacin were performed in guinea pigs with L. pneumophila pneumonia. When gemifloxacin (10 mg/kg) was given by the intraperitoneal (i.p.) route to infected guinea pigs, mean peak levels in plasma were 1.3 microg/ml at 0.5 h and 1.2 microg/ml at 1 h postinjection. The terminal half-life phase of elimination from plasma was 1.3 h, and the area under the concentration-time curve from 0 to 24 h (AUC(0--24)) was 2.1 microg. h/ml. For the same drug dose, mean levels in lungs were 3.4 microg/g at both 0.5 and 1 h, with a half-life of 1.5 h and an AUC(0--24) of 6.0 microg. h/ml. All 15 L. pneumophila-infected guinea pigs treated with gemifloxacin (10 mg/kg/dose given i.p. once daily) for 2 days survived for 9 days after antimicrobial therapy, as did 13 of 14 guinea pigs treated with the same dose of gemifloxacin given for 5 days. All 12 azithromycin-treated animals (15 mg/kg/dose given i.p. once daily for 2 days) survived, as did 11 of 12 animals treated with levofloxacin (10 mg/kg/dose given i.p. once daily for 5 days). None of 12 animals treated with saline survived. Gemifloxacin is effective against L. pneumophila in infected macrophages and in a guinea pig model of Legionnaires' disease, even with an abbreviated course of therapy. These data support studies of the clinical effectiveness of gemifloxacin for the treatment of Legionnaires' disease.

    Topics: Animals; Anti-Infective Agents; Area Under Curve; Azithromycin; Body Weight; Fluoroquinolones; Gemifloxacin; Guinea Pigs; Half-Life; Legionella pneumophila; Legionnaires' Disease; Levofloxacin; Lung; Microbial Sensitivity Tests; Naphthyridines; Ofloxacin; Survival Rate

2001
Comparison of the effects of the new azalide antibiotic, azithromycin, and erythromycin estolate on rat liver cytochrome P-450.
    Antimicrobial agents and chemotherapy, 1991, Volume: 35, Issue:6

    Erythromycin and some other macrolide antibiotics can first induce a cytochrome P-450 isozyme similar to the one induced in rats by pregnenolone-16 alpha-carbonitrile and then inhibit it by forming a stable cytochrome P-450-metabolite complex. The purpose of this study was to compare azithromycin, a novel 15-membered ring azalide, and erythromycin estolate for the potential to cause hepatic microsomal enzyme induction and inhibition in Sprague-Dawley rats. The daily oral administration of 800 mg of erythromycin estolate per kg for 7 days resulted in statistically significant elevations of NADPH-cytochrome c reductase, erythromycin N-demethylase (3.2-fold), and total cytochrome P-450 content. Approximately 40% of cytochrome P-450 was complexed with erythromycin metabolite. In contrast, the daily administration of 200 mg of azithromycin per kg for 7 days caused significant elevations of N-demethylase (2.5-fold) only and did not produce any increases in total cytochrome P-450 content or NADPH-cytochrome c reductase. No complexed cytochrome P-450 was detected in the azithromycin-dosed rats despite liver concentrations of azithromycin that were 118 times greater than the liver concentrations of erythromycin estolate in erythromycin estolate-dosed rats. Although the short-term oral administration of azithromycin produced hepatic accumulation of the drug and elevated azithromycin demethylase activity, there was no other evidence of hepatic cytochrome P-450 induction or inactivation via cytochrome-metabolite complex formation. In contrast to erythromycin estolate, azithromycin is not expected to inhibit its own metabolism or that of other drugs via this pathway.

    Topics: Animals; Azithromycin; Body Weight; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Erythromycin; Erythromycin Estolate; Liver; Male; Micrococcus; Microsomes; Microsomes, Liver; Mixed Function Oxygenases; NADPH-Ferrihemoprotein Reductase; Pregnenolone Carbonitrile; Rats; Rats, Inbred Strains

1991