ziconotide has been researched along with Brain-Ischemia* in 5 studies
5 other study(ies) available for ziconotide and Brain-Ischemia
Article | Year |
---|---|
Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats.
Transient forebrain ischemia results in a 24- to 72-hour delayed loss of CA1 neurons. Previous work has not assessed whether insult durations can vary the degree and maturation rate of CA1 injury and whether there are different ultrastructural features of death after brief or severe ischemia. We also tested whether known cytoprotective drugs achieve permanent or transient neuroprotection.. In the first experiment, ischemia was induced for 5, 15, or 30 minutes with the use of the 4-vessel occlusion rat model with 1- to 28-day survival. Others subjected to 5 or 15 minutes of ischemia and allowed to survive for 14 or 7 days, respectively, were examined with electron microscopy. Finally, we determined whether NBQX (30 mg/kg x3 at 0 or 6 hours after ischemia), an AMPA antagonist, and SNX-111 (5 mg/kg at 6 hours after ischemia), an N-type Ca2+ channel antagonist, provided enduring CA1 protection against 10 minutes of ischemia.. CA1 damage was not detected at 24 hours. Thirty minutes of ischemia produced 47% and 84% CA1 damage at 2 and 3 days, respectively. A 15-minute occlusion yielded 11%, 74%, and 86% loss at 2, 3, and 7 days, respectively. Five minutes of ischemia produced an even slower progression with 24%, 52%, and 59% loss at 3, 7, and 14 days, respectively. Ultrastructural examination after 5 and 15 minutes of ischemia revealed necrosis with no morphological evidence of apoptosis. Both NBQX (P<0.021) and SNX-111 (P<0.001) significantly reduced CA1 death at 7 days (=35%) but not at 28 days (>/=80%) compared with saline treatment ( approximately 79%).. Brief forebrain ischemia results in a slower progression of CA1 loss than more severe insults. Nonetheless, neuronal injury had necrotic, not apoptotic, morphology. NBQX and SNX-111 only postponed CA1 injury. Topics: Animals; Brain Ischemia; Cell Death; Hippocampus; Male; Neurons; Neuroprotective Agents; omega-Conotoxins; Peptides; Quinoxalines; Rats; Rats, Wistar; Time Factors | 1999 |
Ziconotide. CI 1009, SNX 111.
Topics: Animals; Brain Ischemia; Calcium Channel Blockers; Drugs, Investigational; Humans; Neuroprotective Agents; omega-Conotoxins; Pain; Peptides; Rats; Stroke | 1999 |
Effects of Ca2+ and Na+ channel inhibitors in vitro and in global cerebral ischaemia in vivo.
In the present study we have examined the effects of the small organic molecules: NNC 09-0026 ((-)-trans-1-butyl-4-(4-dimethylaminophenyl)-3-[(4-trifluoromethyl-ph eno xy) methyl] piperidine dihydrochloride); SB 201823-A (4-[2-(3,4-dichlorophenoxy)ethyl]-1-pentyl piperidine hydrochloride); NS 649 (2-amino-1-(2,5-dimethoxyphenyl)-5-trifluoromethyl benzimidazole); CNS 1237 (N-acenaphthyl-N'-4-methoxynaphth-1-yl guanidine) and riluzole on human omega-conotoxin sensitive N-type voltage-dependent Ca2+ channel currents (ICa) expressed in HEK293 cells, on Na+ channel currents (INa) in acutely isolated cerebellar Purkinje neurones in vitro and in the gerbil model of global cerebral ischaemia in vivo. Estimated IC50 values for steady-state inhibition of ICa were as follows; NNC 09-0026, 1.1 microM; CNS 1237, 4.2 microM; SB 201823-A, 11.2 microM; NS 649, 45.7 microM and riluzole, 233 microM. Estimated IC50 values for steady-state inhibition of Na+ channel currents were as follows: NNC 09-0026, 9.8 microM; CNS 1237, 2.5 microM; SB 201823-A, 4.6 microM; NS 649, 36.7 microM and riluzole, 9.4 microM. In the gerbil model of global cerebral ischaemia the number of viable cells (mean +/- S.E.M.) per 1 mm of the CA1 was 215 +/- 7 (sham operated), 10 +/- 2 (ischaemic control), 44 +/- 15 (NNC 09-0026 30 mg/kg i.p.), 49 +/- 19 (CNS 1237 30 mg/kg i.p.), 11 +/- 2 (SB 201823-A 10 mg/kg i.p.), 17 +/- 4 (NS 649 50 mg/kg i.p.) and 48 +/- 18 (riluzole 10 mg/kg i.p.). Thus NNC 09-0026, CNS 1237 and riluzole provided significant neuroprotection when administered prior to occlusion while SB 201823-A and NS 649 failed to protect. These results indicate that the Ca2+ channel antagonists studied not only inhibited human N-type voltage-dependent Ca2+ channels but were also effective blockers of rat Na+ channels. Both NNC 09-0026 and CNS 1237 showed good activity at both Ca2+ and Na+ channels and this may contribute to the observed neuroprotection. Topics: Animals; Brain Ischemia; Calcium Channel Blockers; Calcium Channels; Cell Line; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Gerbillinae; Guanidines; Humans; Male; Mollusk Venoms; Neuroprotective Agents; omega-Conotoxins; Peptides; Piperidines; Rats; Receptors, N-Methyl-D-Aspartate; Riluzole; Sodium Channel Blockers; Sodium Channels; Tetrodotoxin | 1997 |
SNX-111, a novel, presynaptic N-type calcium channel antagonist, is neuroprotective against focal cerebral ischemia in rabbits.
Cytosolic Ca2+ overload has been proposed as a main cause of neuronal injury during cerebral ischemia. SNX-111, a synthetic product of the naturally occurring omega-conotoxin MVIIA, is a novel, presynaptic N-type Ca2+ channel antagonist and has been reported to be neuroprotective against cerebral ischemia. We studied the neuroprotective effects of SNX-111 in a rabbit model of focal cerebral ischemia. New Zealand white male rabbits (2.5-3.5 kg) were given 1 mg/kg/h i.v. SNX-111 (n=8) or normal saline (n=8) 10 min after onset of a 2-h period of transient focal cerebral ischemia induced by occlusion of the left middle cerebral, anterior cerebral and internal carotid arteries followed by 4 h reperfusion. SNX-111 significantly attenuated overall cortical ischemic neuronal damage by 44% (saline, 38.7+/-3.0%; SNX-111, 21.5+/-6.0%, P<0.05) and regions of hyperintensity on T2-weighted MRI by 30% (saline, 70.6+/-4.0%; SNX-111, 49.3+/-11.0%, P<0.05). No significant difference in (regional cerebral blood flow) rCBF or MAP (mean arterial blood pressure) was found between SNX-111- and saline-treated rabbits suggesting that neuroprotection is due to a cellular effect. We conclude that SNX-111 reduces ischemic injury in this model. Its use as a clinical neuroprotective agent for cerebrovascular surgery or stroke should be investigated further. Topics: Animals; Blood Pressure; Brain Ischemia; Calcium Channel Blockers; Cerebrovascular Circulation; Evoked Potentials, Somatosensory; Magnetic Resonance Imaging; Male; Neuroprotective Agents; omega-Conotoxins; Peptides; Rabbits | 1997 |
A selective N-type Ca(2+)-channel blocker prevents CA1 injury 24 h following severe forebrain ischemia and reduces infarction following focal ischemia.
SNX-111 (NEUREX Corporation, Menlo Park, CA, U.S.A.) an omega-conopeptide, was tested for cytoprotection following normothermic ischemia using both a four-vessel occlusion model of severe forebrain ischemia and a model of transient middle cerebral artery occlusion focal ischemia. Adult male Wistar rats were subjected to 10 min of forebrain ischemia followed by 7 days of reperfusion. A single dose of SNX-111 (5 mg/kg) was injected intravenously following delays of either 6 or 24 h after reperfusion. For 11 rats treated with saline, there was 78 +/- 13% CA1 neuronal injury (mean +/- SD); for 11 given SNX-111 delayed by 6 h, injury was reduced to 35 +/- 30% (p < 0.01); and remarkably, treatment delayed by 24 h (n = 10), still resulted in protection, with only 50 +/- 29% injury (p < 0.05). Adult male spontaneously hypertensive rats had transient occlusion of the right middle cerebral artery of 1.5- or 2-h duration followed by 22.5 or 22 h of reperfusion, respectively. Rats were randomly assigned to receive either saline or SNX-111 (5 mg/kg i.v.), with treatment starting immediately after reperfusion (1.5-h ischemic group) or at 1 h following the onset of ischemia (2-h ischemic group). In the 1.5-h ischemic group, saline-treated animals sustained 138 +/- 32 mm3 of neocortical infarction (n = 9), and SNX-111 treatment resulted in an infarct reduction to 76 +/- 25 mm3 (n = 9; p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Brain Ischemia; Calcium Channel Blockers; Cerebral Infarction; Cerebrovascular Circulation; Hippocampus; Male; Morbidity; omega-Conotoxins; Peptides; Prosencephalon; Rats; Rats, Inbred SHR; Rats, Wistar; Survival Analysis | 1994 |