ziconotide has been researched along with Brain-Injuries* in 5 studies
5 other study(ies) available for ziconotide and Brain-Injuries
Article | Year |
---|---|
Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats.
Abnormal accumulation of intracellular calcium following traumatic brain injury (TBI) is thought to contribute to a cascade of cellular events that lead to neuropathological conditions. Therefore, the possibility that specific calcium channel antagonists might exert neuroprotective effects in TBI has been of interest. The focus of this study was to examine whether Ziconotide produces such neuroprotective effects.. The authors report that the acceleration-deceleration model of TBI developed by Marmarou, et al., induces a long-lasting deficit of neuromotor and behavioral function. The voltage-sensitive calcium channel blocker Ziconotide (also known as SNX-111 and CI-1009) exerts neuroprotective effects in this model of diffuse brain injury (DBI) in rats. The dose and time of injection of Ziconotide chosen for the present study was based on the authors' previous biochemical studies of mitochondria. Rats were trained in a series of motor and memory tasks, following which they were subjected to DBI using the Marmarou, et al., model. At 3, 5, and 24 hours, all rats were injected with 2 mg/kg Ziconotide for a total cumulative dose of 6 mg/kg Ziconotide. Control brain-injured animals were injected with an equal volume of saline vehicle at each of these time points. The rats were tested for motor and cognitive performance at 1, 3, 7,14, 21, 28, 35, and 42 days postinjury. Saline-treated rats displayed severe motor and cognitive deficits after DBI. Compared with saline-treated control animals, rats treated with Ziconotide displayed better motor performance during inclined plane, beam balance, and beam walk tests; improved memory while in the radial arm maze; and improved learning while in the Morris water maze.. These results demonstrated that the acceleration-deceleration model, which had been developed by Marmarou, et al., induces severe motor and cognitive deficits. We also demonstrated that Ziconotide exhibits substantial neuroprotective activity in this model of TBI. Improvement was observed in both motor and cognitive tasks, even though treatment was not initiated until 3 hours after injury. These findings support the development of neuronal N-type calcium channel antagonists as useful therapeutic agents in the treatment of TBI. Topics: Animals; Behavior, Animal; Brain Injuries; Calcium Channel Blockers; Disease Models, Animal; Male; Maze Learning; Mitochondria; Motor Activity; Neuroprotective Agents; omega-Conotoxins; Postural Balance; Rats; Rats, Sprague-Dawley | 2000 |
Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose-response and time-window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury.
Determining the efficacy of a drug used in experimental traumatic brain injury (TBI) requires the use of one or more outcome measures such as decreased mortality or fewer neurological and neuropsychological deficits. Unfortunately, outcomes in these test batteries have a fairly large variability, requiring relatively large sample sizes, and administration of the tests themselves is also very time consuming. The authors previously demonstrated that experimental TBI and human TBI induce mitochondrial dysfunction. Because mitochondrial dysfunction is easy to assess compared with neurobehavioral endpoints, it might prove useful as an outcome measure to establish therapeutic time windows and dose-response curves in preclinical drug testing. This idea was tested in a model of TBI in rats.. Animals treated with the selective N-type voltage-sensitive calcium channel blocker Ziconotide (also known as SNX-111 and CI-1009) after cortical impact displayed significant improvement in brain mitochondrial function. When a single intravenous bolus injection of 4 mg/kg Ziconotide was given at different time intervals, ranging from 15 minutes before injury to 10 hours after injury, mitochondrial function was improved at all time points, but more so between 2 and 6 hours postinjury. The authors evaluated the effects on mitochondrial function of Ziconotide at different doses by administering 0.5 to 6 mg/kg as a single bolus injection 4 hours after injury, and found 4 mg/kg to be the optimum dose.. The authors established these time-window profiles and dose-response curves on the basis of mitochondrial outcome measures in a total of 42 rats because there were such low standard deviations in these tests. Establishing similar time-window profiles and dose-response curves by using neurobehavioral endpoints would have required using 114 rats in much more elaborate experiments. Topics: Animals; Brain; Brain Injuries; Calcium Channel Blockers; Calcium Channels, N-Type; Disease Models, Animal; Dose-Response Relationship, Drug; Male; Mitochondria; Neuroprotective Agents; omega-Conotoxins; Oxygen; Rats; Rats, Sprague-Dawley; Time Factors | 2000 |
Effects of an N-type calcium channel antagonist (SNX 111; Ziconotide) on calcium-45 accumulation following fluid-percussion injury.
Accumulation of calcium following experimental traumatic brain injury (TBI) has been demonstrated to be a prominent pathophysiological component that can compromise mitochondrial functioning and threaten cell survival. The omega-conopeptide SNX-111, also known as Ziconotide, is a potent antagonist of the voltage-gated N-type calcium channel and has demonstrated significant neuroprotective effects against ischemia-induced neuronal injury. To determine whether this compound would be effective in reducing calcium accumulation associated with TBI, SNX-111 was administered intravenously to rats 1 hour following a moderate (2.2 to 2.75 atm) lateral fluid-percussion injury (or sham) at doses of 1 (n = 30), 3 (n = 31), or 5 (n = 30) mg/kg; another group received 0.9% saline solution (n = 35). Brains were processed for calcium 45 (45Ca) autoradiography at 6, 12, 24, 48, and 96 hours following insult. Optical density measurements of 20 cortical and subcortical regions were analyzed. Injured animals administered saline solution exhibited a significant increase in 45Ca uptake within 12 regions ipsilateral to the site of injury. The most prominent increases were evident throughout the ipsilateral cerebral cortex. SNX-111 reduced the injury-induced calcium accumulation within the ipsilateral cortex in a dose-response fashion when measured at 6, 12, and 48 hours after insult. These drug-induced reductions in calcium accumulation were as high as 75% in the ipsilateral cerebral cortex, and up to 50% in other ipsilateral regions (including thalamus and hippocampus). Consequently, the results suggest that posttraumatic blocking of the voltage-gated N-type calcium channel after injury reduces prolonged, trauma-induced calcium accumulation. Topics: Animals; Autoradiography; Brain; Brain Concussion; Brain Injuries; Calcium; Calcium Channel Blockers; Calcium Channels, N-Type; Calcium Radioisotopes; Cerebral Cortex; Functional Laterality; Hippocampus; Male; Neuroprotective Agents; omega-Conotoxins; Peptides; Rats; Rats, Sprague-Dawley; Thalamus | 1999 |
Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E.
We recently demonstrated that posttraumatic administration of the N-type calcium channel blocker SNX-111 (S) and a novel blood-brain barrier penetrating antioxidant U-101033E (U), significantly alleviated mitochondrial dysfunction induced by traumatic brain injury (TBI) in rats. The present study was designed to determine whether a combination of S and U, which act on different biochemical mechanisms of secondary brain injury, would be more efficacious than either drug alone. Brain mitochondria from injured and uninjured hemispheres were isolated and examined at 12 h post TBI induced by a severe controlled cortical impact injury. S at 1.0 mg/kg significantly increased both State 3 and 4 rates and produced a slight increase in P/O ratio, and there was virtually no change in RCI. U at 1.0 mg/kg did not show any protection. However, the combined treatment of S at 1.0 mg/kg and U at 1.0 mg/kg eliminated the uncoupling effect of S, and restored not only State 3 rates and P/O ratios but also RCI to near sham values. These results provide further evidence that both reactive oxygen species and perturbation of cellular calcium homeostasis participate in the pathogenesis of TBI-induced mitochondrial dysfunction, and support the idea of using combined therapy with lower drug doses. Topics: Analysis of Variance; Animals; Antioxidants; Brain Injuries; Calcium; Calcium Channel Blockers; Calcium-Transporting ATPases; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Electron Transport; Male; Mitochondria; Neuroprotective Agents; omega-Conotoxins; Oxidative Phosphorylation; Peptides; Pyrimidines; Pyrrolidines; Rats; Rats, Sprague-Dawley | 1998 |
Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective N-type calcium channel antagonist (SNX-111).
We have recently demonstrated in a rat model that traumatic brain injury induces perturbation of cellular calcium homeostasis with an overload of cytosolic calcium and excessive calcium adsorbed on the mitochondrial membrane, consequently the mitochondrial respiratory chain-linked oxidative phosphorylation was impaired. We report the effect of a selective N-type calcium channel blocker, SNX-111 on mitochondrial dysfunction induced by a controlled cortical impact. Intravenous administration of SNX-111 at varying times post injury was made. The concentration titration profile revealed SNX-111 at 4 mg kg-1 to be optimal, and the time window to be administration at 4 h post-injury, in line with that reported on the effect of SNX-111 in experimental stroke. Under optimal conditions, SNX-111 significantly improved the mitochondrial respiratory chain-linked functions, such as the electron transfer activities with both succinate and NAD-linked substrates, and the accompanied energy coupling capacities measured as respiratory control indices (RCI) and ATP synthesis (P/O ratio), and the energy linked Ca2+ transport. In order to assess the applicability of these data to the clinical setting, we have initiated studies with brain tissue which has to be resected during surgical treatment. Five patients suffered from brain trauma, one from intracranial hypertension due to stroke (noninfarcted tissue was taken), and one from epilepsy. Our data revealed that brain mitochondria derived from the patient with intracranial hypertension and the patient with epilepsy were tightly coupled with good respiratory rates with glutamate and malate as substrates, and high P/O ratios. The rates of respiration and ATP synthesis were severely impaired in the brain mitochondria isolated from traumatized patients. These results indicate that investigation of brain mitochondrial functions can be used as a measure for trauma-induced impairment of brain energy metabolism. The time window for the effect of SNX-111 in mitochondrial function and the (preliminary) similarity between mitochondrial dysfunction in experimental animals and humans make the drug appear to be well suited for clinical trials in severe head injury. Topics: Animals; Biological Transport; Brain Injuries; Calcium; Calcium Channel Blockers; Dose-Response Relationship, Drug; Humans; Male; Mitochondria; Neurons; omega-Conotoxins; Oxidative Phosphorylation; Peptides; Rats; Rats, Sprague-Dawley; Wounds and Injuries | 1997 |