ziconotide has been researched along with Arthritis--Rheumatoid* in 2 studies
2 other study(ies) available for ziconotide and Arthritis--Rheumatoid
Article | Year |
---|---|
Suppression of Peripheral Pain by Blockade of Voltage-Gated Calcium 2.2 Channels in Nociceptors Induces RANKL and Impairs Recovery From Inflammatory Arthritis in a Mouse Model.
A hallmark of rheumatoid arthritis (RA) is the chronic pain that accompanies inflammation and joint deformation. Patients with RA rate pain relief as the highest priority; however, few studies have addressed the efficacy and safety of therapies directed specifically toward pain pathways. The ω-conotoxin MVIIA (ziconotide) is used in humans to alleviate persistent pain syndromes, because it specifically blocks the voltage-gated calcium 2.2 (CaV 2.2) channel, which mediates the release of neurotransmitters and proinflammatory mediators from peripheral nociceptor nerve terminals. The aims of this study were to investigate whether blockade of CaV 2.2 can suppress arthritis pain, and to examine the progression of induced arthritis during persistent CaV 2.2 blockade.. Transgenic mice expressing a membrane-tethered form of MVIIA under the control of a nociceptor-specific gene (MVIIA-transgenic mice) were used in the experiments. The mice were subjected to unilateral induction of joint inflammation using a combination of antigen and collagen.. CaV 2.2 blockade mediated by tethered MVIIA effectively suppressed arthritis-induced pain; however, in contrast to their wild-type littermates, which ultimately regained use of their injured joint as inflammation subsided, MVIIA-transgenic mice showed continued inflammation, with up-regulation of the osteoclast activator RANKL and concomitant joint and bone destruction.. Taken together, our results indicate that alleviation of peripheral pain by blockade of CaV 2.2- mediated calcium influx and signaling in nociceptor sensory neurons impairs recovery from induced arthritis and point to the potentially devastating effects of using CaV 2.2 channel blockers as analgesics during inflammation. Topics: Animals; Arthritis, Experimental; Arthritis, Rheumatoid; Calcium Channel Blockers; Calcium Channels, N-Type; Disease Models, Animal; Mice; Mice, Transgenic; Nociceptive Pain; Nociceptors; omega-Conotoxins; RANK Ligand; Stifle; Tumor Necrosis Factor-alpha; Up-Regulation | 2015 |
Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis.
To evaluate the ability of SNX-7081, a novel small molecule inhibitor of Hsp90, to block components of inflammation, including cytokine production, protein kinase activity, and angiogenic signaling. A close analog was evaluated in preclinical in vivo models of rheumatoid arthritis (RA).. SNX-7081 binding to Hsp90 was characterized in Jurkat cells and RA synovial fibroblasts (RASFs). Inhibition of NF-kappaB nuclear translocation was evaluated in cellular systems, using lipopolysaccharide (LPS), tumor necrosis factor alpha, or interleukin-1beta stimulation. Suppression of cytokine production in THP-1 cells, human umbilical vein endothelial cells, and RASFs was studied. Disruption of MAPK signaling cascades by SNX-7081 following growth factor stimulation was assessed. SNX-7081 was tested in 2 relevant angiogenesis assays: platelet-derived growth factor activation of fibroblasts and LPS-induced nitric oxide (NO) release in J774 macrophages. A close analog, SNX-4414, was evaluated in rat collagen-induced arthritis and adjuvant-induced arthritis, following oral treatment.. SNX-7081 showed strong binding affinity to Hsp90 and expected induction of Hsp70. NF-kappaB nuclear translocation was blocked by SNX-7081 at nanomolar concentrations, and cytokine production was potently inhibited. Growth factor activation of ERK and JNK signaling was significantly reduced by SNX-7081. NO production was also sharply inhibited. In animal models, SNX-4414 fully inhibited paw swelling and improved body weight. Scores for inflammation, pannus formation, cartilage damage, and bone resorption returned to normal.. The present results demonstrate that a small molecule Hsp90 inhibitor can impact inflammatory disease processes. The strong in vivo efficacy observed with SNX-4414 provides preclinical validation for consideration of Hsp90 inhibitors in the treatment of RA. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Arthritis, Rheumatoid; Benzamides; Cytokines; Disease Models, Animal; Down-Regulation; Female; Fibroblasts; HSP72 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Humans; Jurkat Cells; Macrophages; Male; Mice; Mitogen-Activated Protein Kinases; Neovascularization, Physiologic; NF-kappa B; NIH 3T3 Cells; Nitric Oxide; omega-Conotoxins; Rats; Rats, Inbred Lew; Rats, Sprague-Dawley; Signal Transduction; Synovial Membrane | 2008 |