zerumbone and Leukemia

zerumbone has been researched along with Leukemia* in 4 studies

Other Studies

4 other study(ies) available for zerumbone and Leukemia

ArticleYear
Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model.
    International journal of nanomedicine, 2015, Volume: 10

    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Drug Carriers; Leukemia; Lipids; Mice; Nanostructures; Sesquiterpenes

2015
Zerumbone induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in Jurkat cell line.
    Natural product communications, 2014, Volume: 9, Issue:9

    This investigation determined the anticancer properties of zerumbone (ZER) on the human T-cell (Jurkat) line using the MTT assay, microscopic evaluations, flow cytometric analyses, and caspase activity estimations. The results showed that ZER is selectively cytotoxic to Jurkat cells in a dose and time-dependent manner with IC50 of 11.9 ± 0.2, 8.6 ± 0.5 and 5.4 ± 0.4 μg/mL at 24, 48 and 72 hours of treatment, respectively. ZER did not produce an adverse effect on normal human peripheral blood mononuclear cells (PBMC). ZER is not as cytotoxic as doxorubicin, which imposed an inhibitory effect on Jurkat cells with IC50 of 2.1 ± 0.2, 1.8 ± 0.15, 1.5 ± 0.07 μg/mL after 24, 48 and 72 hours treatment, respectively. ZER significantly (P < 0.05) arrested Jurkat cells at the G2/M phase of the cell cycle. The antiproliferative effect of ZER on Jurkat cells was through the apoptotic intrinsic pathway via the activation of caspase-3 and -9. The results showed that ZER can be further developed into a safe chemotherapeutic compound for the treatment of cancers, especially leukemia.

    Topics: Apoptosis; G2 Phase Cell Cycle Checkpoints; Humans; Jurkat Cells; Leukemia; M Phase Cell Cycle Checkpoints; Mitochondria; Plant Extracts; Sesquiterpenes; Zingiberales

2014
Zerumbone-loaded nanostructured lipid carriers: preparation, characterization, and antileukemic effect.
    International journal of nanomedicine, 2013, Volume: 8

    Zerumbone, a natural dietary lipophilic compound with low water solubility (1.296 mg/L at 25°C) was used in this investigation. The zerumbone was loaded into nanostructured lipid carriers using a hot, high-pressure homogenization technique. The physicochemical properties of the zerumbone-loaded nanostructured lipid carriers (ZER-NLC) were determined. The ZER-NLC particles had an average size of 52.68 ± 0.1 nm and a polydispersity index of 0.29 ± 0.004 μm. Transmission electron microscopy showed that the particles were spherical in shape. The zeta potential of the ZER-NLC was -25.03 ± 1.24 mV, entrapment efficiency was 99.03%, and drug loading was 7.92%. In vitro drug release of zerumbone from ZER-NLC was 46.7%, and for a pure zerumbone dispersion was 90.5% over 48 hours, following a zero equation. Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human T-cell acute lymphoblastic leukemia (Jurkat) cells, the half maximal inhibitory concentration (IC50) of ZER-NLC was 5.64 ± 0.38 μg/mL, and for free zerumbone was 5.39 ± 0.43 μg/mL after 72 hours of treatment. This study strongly suggests that ZER-NLC have potential as a sustained-release drug carrier system for the treatment of leukemia.

    Topics: Analysis of Variance; Antineoplastic Agents; Cell Survival; Crystallization; Drug Carriers; Drug Stability; Humans; Hydrogen-Ion Concentration; Jurkat Cells; Leukemia; Lipids; Microbial Sensitivity Tests; Nanoparticles; Particle Size; Sesquiterpenes; X-Ray Diffraction

2013
Zerumbone, a bioactive sesquiterpene, induces G2/M cell cycle arrest and apoptosis in leukemia cells via a Fas- and mitochondria-mediated pathway.
    Cancer science, 2007, Volume: 98, Issue:1

    We demonstrated here for the first time that zerumbone (ZER), a natural cyclic sesquiterpene, significantly suppressed the proliferation of promyelocytic leukemia NB4 cells among several leukemia cell lines, but not human umbilical vein endothelial cells (HUVECs), by inducing G2/M cell cycle arrest followed by apoptosis with 10 microM of IC50. Treatment of NB4 cells with growth-suppressive concentrations of ZER resulted in G2/M cell cycle arrest that was associated with a decline of Cyclin B1 protein, but with the phosphorylation of ATM/ Chk1/Chk2. In addition, ZER induced the phosphorylation of Cdc25C at the Thr48 residue and Cdc2 at the Thr14/Tyr15 residues. Furthermore, ZER-induced apoptosis in NB4 cells was initiated by the expression of Fas (CD95)/Fas Ligand (CD95L), concomitant with the activation of caspase-8. ZER was also found to induce the cleavage of Bid, a mediator that is known to connect the Fas/CD95 cell death receptor to the mitochondrial apoptosis pathway. ZER also induced the cleavage of Bax and Mcl-1 proteins, but not Bcl-2 or Bcl-XL. ZER-induced apoptosis took place in association with a loss of the mitochondrial transmembrane potential as well as the activation of caspase-3 and -9, resulting in the degradation of the proteolytic poly (ADP-ribose) polymerase (PARP). ZER also triggered a release of cytochrome c into the cytoplasm. Both antagonistic anti-Fas antibody ZB4 and pan-caspase inhibitor Z-VAD inhibited ZER-induced apoptosis in NB4 cells. Taken together, ZER is an inducer of apoptosis in leukemic cells that specifically triggers the Fas/CD95- and mitochondria-mediated apoptotic signaling pathway.

    Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Caspase 3; Cell Line, Tumor; Fas Ligand Protein; fas Receptor; G2 Phase; Humans; Leukemia; Mitochondria; Sesquiterpenes

2007