zearalenone has been researched along with Encephalitis* in 2 studies
2 other study(ies) available for zearalenone and Encephalitis
Article | Year |
---|---|
Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation.
Heat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.5°C and Relative Humidity, RH=30±10%) with real-time measurement of core temperature (Tc) and skin temperature (Ts). Animals were divided into two subgroups: Moderate HS (MHS) (Tc=40°C) and Severe HS (SHS)/Heat stroke (Tc=42°C). Rats with MHS showed an increase in Mean Arterial Pressure (MAP) and Heart Rate (HR) while fall in MAP and rise in HR was observed in rats with SHS. In addition, oxidative stress and an increase in pyknotic neurons were observed in HTH. High levels of Adrenocorticotropic-hormone (ACTH), Epinephrine (EPI), Norepinephrine (NE) and Dopamine (DA) in the systemic circulation and progressive increase in EPI and DA levels in HTH were recorded after the thermal insult. Moreover, a substantial increase in Glutamate (Glu) level was observed in HTH as well as in systemic circulation of heat stroke rats. We found a rise in NE whereas a fall in Serotonin (5-HT) level in HTH at MHS, without perturbing inflammatory mediators. However, rats with SHS exhibited significant elevations in NF-kB, IL-1β, COX2, GFAP and Iba1 protein expression in HTH. In conclusion, the data suggest that SHS induces neuroinflammation in HTH, which is associated with monoamines and Glu imbalances, leading to thermoregulatory disruption. Topics: Adrenocorticotropic Hormone; Analysis of Variance; Animals; Biogenic Monoamines; Blood Pressure; Body Temperature; Corticotropin-Releasing Hormone; Cyclooxygenase 2; Encephalitis; Glial Fibrillary Acidic Protein; Heart Rate; Hot Temperature; Male; NF-kappa B; Oxidative Stress; Random Allocation; Rats; Rats, Sprague-Dawley; Zearalenone | 2017 |
The inhibition of transforming growth factor beta-activated kinase 1 contributed to neuroprotection via inflammatory reaction in pilocarpine-induced rats with epilepsy.
Recently, more and more studies support that inflammation is involved in the pathogenesis of epilepsy. Although TGFβ signaling is involved in epileptogenesis, whether TGFβ-associated neuroinflammation is sufficient to regulate epilepsy remains unknown to date. Furthermore, tumor necrosis factor-α receptor-associated factor-6 (TRAF6), transforming growth factor beta-activated kinase 1 (TAK1), which are the key elements of TGFβ-associated inflammation, is still unclear in epilepsy. Therefore, the present study aimed to explore the role of TRAF6 and TAK1 in pilocarpine-induced epileptic rat model. Firstly, the gene levels and protein expression of TRAF6 and TAK1 were detected in different time points after pilocarpine-induced status epilepticus (SE). 5z-7-oxozeaenol treatment (TAK1 antagonist) was then performed; the changes in TRAF6, TAK1, phosphorylated-TAK1 (P-TAK1), interleukin-1β (IL-1β) levels, neuronal survival and apoptosis, and seizure activity were detected. Our results showed that expressions of TRAF6 were increased after SE, reached the peak in 7day, maintained at the high level to 30days, and the TAK1, P-TAK1 levels were increased after SE following time. After 5z-7-oxozeaenol treatment in epileptic rats, TRAF6-TAK1-P-TAK1 signaling protein expressions were reduced, inflammatory cytokine IL-1β expression was decreased, neuron survival index was improved, the neuron apoptosis index was decreased and seizure durations were alleviated. In conclusion, the expression of TRAF6 and TAK1 are related to the progression of epilepsy. TAK1 might be a potential intervention target for the treatment of epilepsy via neuroprotection. Topics: Animals; Cell Survival; Cerebral Cortex; Disease Models, Animal; Encephalitis; Hippocampus; Interleukin-1beta; Male; MAP Kinase Kinase Kinases; Neurons; Neuroprotection; Pilocarpine; Rats; Rats, Sprague-Dawley; Status Epilepticus; TNF Receptor-Associated Factor 6; Zearalenone | 2016 |