zearalenol has been researched along with Body-Weight* in 4 studies
1 trial(s) available for zearalenol and Body-Weight
Article | Year |
---|---|
Efficacy of activated diatomaceous clay in reducing the toxicity of zearalenone in rats and piglets.
Two experiments were conducted to evaluate the efficacy of an activated diatomaceous clay (ADC) in reducing the toxic effects of zearalenone (ZEA) in the diet of rats and piglets. In the rat experiment, 90 Sprague-Dawley female weanling rats with an initial BW of 45 ± 1.0 g were assigned to 1 of 6 dietary treatments for 28 d in a completely randomized design (CRD) with a 2 × 3 factorial arrangement (0 or 6 mg ZEA/kg feed and 0, 1, and 5 g ADC/kg feed). In the piglet experiment, 64 female piglets ([Large White × Landrace] × Pietrain with an initial BW of 14.9 ± 1.65 kg) were fed 1 of 8 experimental diets for 26 d in a CRD design with a 2 × 4 factorial arrangement (0 or 0.8 mg ZEA/kg feed and 0, 1, 2, and 5 g ADC/kg feed). The ADFI, ADG, and G:F were determined at the end of each experiment. At the conclusion of studies, serum samples were collected and rats and piglets were euthanized to determine visceral organ weights. The diet contaminated with ZEA did not alter the growth of rats and the relative weight of liver and kidneys. However, ZEA increased ( < 0.05) the relative weight of uterus, ovaries, and spleen and decreased ( < 0.05) the serum activities of alkaline phosphatase and alanine aminotransferase compared to the control group. Supplementation of ADC in the rat diets counteracted ( < 0.05) the observed toxic effects of ZEA on the uterus and ovaries weight. The diet contaminated with ZEA (0.8 mg/kg feed) increased ( < 0.05) the weight of the uterus and ovaries in piglets but did not modify the serum biochemical variables or the relative weight of other visceral organs. The addition of 5 g ADC/kg to the contaminated feed reduced the toxic effects of ZEA on uterus and ovary weights to that of the control group. Zearalenone (10.5 μg/kg bile) and α-zearalenol (5.6 μg/kg bile) residues were detected in the bile of piglets fed the ZEA treatment. Supplementation of ADC to diets contaminated with ZEA reduced ( = 0.001) ZEA content in bile compared to the ZEA treatments. The results of these experiments indicate that a long-term consumption of ZEA-contaminated diets stimulated growth of the reproductive tract in rats and piglets and the presence of ZEA residue in bile in piglets. These effects may be counteracted by the addition of ADC to the diet. Topics: Aluminum Silicates; Animal Feed; Animals; Bile; Body Weight; Clay; Diatomaceous Earth; Diet; Female; Kidney; Liver; Organ Size; Rats; Rats, Sprague-Dawley; Spleen; Swine; Uterus; Zearalenone; Zeranol | 2015 |
3 other study(ies) available for zearalenol and Body-Weight
Article | Year |
---|---|
Physiologically-based toxicokinetic modeling of zearalenone and its metabolites: application to the Jersey girl study.
Zearalenone (ZEA), a fungal mycotoxin, and its metabolite zeranol (ZAL) are known estrogen agonists in mammals, and are found as contaminants in food. Zeranol, which is more potent than ZEA and comparable in potency to estradiol, is also added as a growth additive in beef in the US and Canada. This article presents the development and application of a Physiologically-Based Toxicokinetic (PBTK) model for ZEA and ZAL and their primary metabolites, zearalenol, zearalanone, and their conjugated glucuronides, for rats and for human subjects. The PBTK modeling study explicitly simulates critical metabolic pathways in the gastrointestinal and hepatic systems. Metabolic events such as dehydrogenation and glucuronidation of the chemicals, which have direct effects on the accumulation and elimination of the toxic compounds, have been quantified. The PBTK model considers urinary and fecal excretion and biliary recirculation and compares the predicted biomarkers of blood, urinary and fecal concentrations with published in vivo measurements in rats and human subjects. Additionally, the toxicokinetic model has been coupled with a novel probabilistic dietary exposure model and applied to the Jersey Girl Study (JGS), which involved measurement of mycoestrogens as urinary biomarkers, in a cohort of young girls in New Jersey, USA. A probabilistic exposure characterization for the study population has been conducted and the predicted urinary concentrations have been compared to measurements considering inter-individual physiological and dietary variability. The in vivo measurements from the JGS fall within the high and low predicted distributions of biomarker values corresponding to dietary exposure estimates calculated by the probabilistic modeling system. The work described here is the first of its kind to present a comprehensive framework developing estimates of potential exposures to mycotoxins and linking them with biologically relevant doses and biomarker measurements, including a systematic characterization of uncertainties in exposure and dose estimation for a vulnerable population. Topics: Animals; Biomarkers; Body Weight; Child; Cohort Studies; Female; Food Analysis; Half-Life; Humans; Models, Biological; Models, Chemical; Monte Carlo Method; New Jersey; Rats; Rats, Sprague-Dawley; Tissue Distribution; Toxicokinetics; Zearalenone; Zeranol | 2014 |
Urinary mycoestrogens, body size and breast development in New Jersey girls.
Despite extensive research and interest in endocrine disruptors, there are essentially no epidemiologic studies of estrogenic mycotoxins, such as zeranol and zearalenone (ZEA). ZEA mycoestrogens are present in grains and other plant foods through fungal contamination, and in animal products (e.g., meat, eggs, dairy products) through deliberate introduction of zeranol into livestock to enhance meat production, or by indirect contamination of animals through consumption of contaminated feedstuff. Zeranol is banned for use in animal husbandry in the European Union and other countries, but is still widely used in the US. Surprisingly, little is known about the health effects of these mycoestrogens, including their impact on puberty in girls, a period highly sensitive to estrogenic stimulation.. We conducted a cross-sectional analysis among 163 girls, aged 9 and 10 years, participating in the Jersey Girl Study to measure urinary mycoestrogens and their possible relationship to body size and development.. We found that mycoestrogens were detectable in urine in 78.5% of the girls, and that urinary levels were predominantly associated with beef and popcorn intake. Furthermore, girls with detectable urinary ZEA mycoestrogen levels tended to be shorter and less likely to have reached the onset of breast development.. Our findings suggest that ZEA mycoestrogens may exert anti-estrogenic effects similar to those reported for isoflavones. To our knowledge, this was the first evaluation of urinary mycoestrogens and their potential health effects in healthy girls. However, our findings need replication in larger studies with more heterogeneous populations, using a longitudinal approach. Topics: Animals; Body Height; Body Weight; Breast; Cattle; Child; Chromatography, High Pressure Liquid; Cross-Sectional Studies; Endocrine Disruptors; Environmental Exposure; Estrogens, Non-Steroidal; Female; Food Contamination; Health Surveys; Humans; Isoflavones; Mass Spectrometry; New Jersey; Puberty; Zea mays; Zearalenone; Zeranol | 2011 |
The phytoestrogen alpha-zearalenol reverses endothelial dysfunction induced by oophorectomy in rats.
It has been shown recently that alpha-zearalenol, a resorcyclic acid lactone, prevents bone loss in a rat model of postmenopausal bone loss. We have therefore investigated the effects of this phytoestrogen on endothelial dysfunction induced by estrogen deficiency in rats. Female mature Sprague-Dawley rats underwent a bilateral oophorectomy (OVX rats). Sham-operated animals (sham OVX rats) were used as controls. Three weeks after surgery, animals were randomized to the following treatments: alpha-zearalenol (1 mg/kg/day, i.m., for 4 weeks), 17beta-estradiol (20 microg/kg/day, i.m., for 4 weeks), or their vehicle (100 microl, i.m., of cottonseed oil). Two other groups of rats were treated with alpha-zearalenol or 17beta-estradiol plus the pure estrogen receptor antagonist ICI 182780 (2.5 mg/kg/day, i.m., for 4 weeks). Mean arterial blood pressure (MAP), heart rate (HR), total plasma cholesterol, plasma estradiol, and plasma alpha-zearalenol were studied. We also investigated endothelial-dependent (acetylcholine, 10 nM to 10 microM) and endothelial-independent (sodium nitroprusside, 15 nM to 30 nM) relaxation of aortic rings, as well as N(G)-methyl-L-arginine (L-NMA: 10 to 100 microM)-induced vasoconstriction and calcium-dependent nitric oxide synthase (cNOS) activity in homogenates of lungs taken from both sham OVX rats and OVX rats. Untreated OVX rats had, compared with sham OVX animals, unchanged body weight, MAP, HR, and plasma cholesterol. In contrast oophorectomy reduced plasma estradiol levels (OVX, 2 +/- 0.5 pg/ml; sham OVX, 35 +/- 6 pg/ml), impaired endothelial-dependent relaxation and blunted L-NMA-induced contraction (L-NMA 100 microM: sham OVX, 2.7 +/- 0.3 g/mg tissue; OVX, 1.3 +/- 0.1 g/mg tissue). Moreover OVX rats showed a reduced calcium-dependent NO synthase (cNOS) activity. Treatment with alpha-zearalenol or with 17beta-estradiol reverted the endothelial dysfunction and increased cNOS activity in lung homogenates. These effects were abolished by the pure estrogen receptor antagonist ICI 182780. Our data suggest that alpha-zearalenol improves endothelial-dependent relaxation in OVX rats through an estrogen receptor-mediated effect. Topics: Acetylcholine; Animals; Aorta; Blood Pressure; Body Weight; Endothelium, Vascular; Estradiol; Estrogen Antagonists; Estrogens, Non-Steroidal; Female; Fulvestrant; Heart Rate; In Vitro Techniques; Isoflavones; Lung; Muscle Contraction; Muscle, Smooth, Vascular; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitroprusside; Organ Size; Ovariectomy; Phytoestrogens; Plant Preparations; Rats; Rats, Sprague-Dawley; Reference Values; Uterus; Zeranol | 2001 |