zd-7155 and Body-Weight

zd-7155 has been researched along with Body-Weight* in 2 studies

Other Studies

2 other study(ies) available for zd-7155 and Body-Weight

ArticleYear
Effects of sympathetic nerves and angiotensin II on renal sodium and water handling in rats with common bile duct ligature.
    American journal of physiology. Renal physiology, 2005, Volume: 288, Issue:6

    We tested the hypothesis that angiotensin II is likely to be mandatory for the neurogenic sodium and volume retention in cirrhotic rats with common bile duct ligature (BDL) following an acute volume load. To assess the neural control of volume homeostasis, 21 days after common BDL rats underwent volume expansion (0.9% NaCL; 10% body wt over 30 min) to decrease renal sympathetic nerve activity. Untreated animals, rats with renal denervation or pretreated with a nonhypotensive dose of an angiotensin II type 1 receptor antagonist were studied. The renal renin-angiotensin system was assessed by immunohistochemistry and RT-PCR. Rats with BDL excreted only 71 +/- 4% of the administered volume load. In cirrhotic rats pretreated with an angiotensin II AT1 inhibitor or after renal denervation, these values ranged significantly higher from 98 to 103% (P < 0.05 for all comparisons). Renal sympathetic nerve activity decreases by volume expansion were impaired in BDL rats (P < 0.05) but unaffected by angiotensin II receptor inhibition. In kidneys of BDL animals, renin mRNA was increased, and immunohistochemistry revealed increased staining for peritubular angiotensin II. Renal denervation in BDL animals reduced renin expression within 5 days to control levels. In conclusion, the impaired excretion of an acute volume load in rats with liver cirrhosis is due to effects of an increased renal sympathetic nerve activity that are likely to be dependent on intrarenal angiotensin II and renin. We speculate that similar changes may contribute to long-term volume retention in liver cirrhosis.

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Body Weight; Common Bile Duct; Dose-Response Relationship, Drug; Ligation; Liver Cirrhosis; Male; Naphthyridines; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Renin; Renin-Angiotensin System; Sodium; Sympathetic Nervous System; Vasoconstrictor Agents; Water

2005
Fos immunoreactivity in the lamina terminalis of adrenalectomized rats and effects of angiotension II type 1 receptor blockade or deoxycorticosterone.
    Neuroscience, 2000, Volume: 98, Issue:1

    Neural activity, as measured immunohistochemically by the presence of Fos protein, was determined in the lamina terminalis, a thin strip of tissue forming the anterior wall of the third brain ventricle, after adrenalectomy. Several weeks after surgery, the adrenalectomized rats were maintained with access to water and a low sodium diet for five days. In addition, hypertonic (0.5M) NaCl solution was available for the entire five-day period (sodium available) or only during the first four days (sodium unavailable). The number of neurons expressing Fos, determined at the end of the fifth day, was increased in the adrenalectomized rats with or without NaCl solution to drink. Fos activity in the median preoptic nucleus was increased only in adrenalectomized rats without access to NaCl solution. Treatment of adrenalectomized rats with the sodium-retaining mineralocorticoid hormone, deoxycorticosterone, at the end of the fourth day, decreased Fos expression in the subfornical organ and the organum vasculosum of the lamina terminalis when NaCl solution was available but not when the NaCl solution was unavailable. In the adrenalectomized rats with NaCl solution available, mineralocorticoid treatment decreased both urinary sodium excretion and daily sodium intake. Brain nuclei in the lamina terminalis also became activated in intact rats made sodium deplete by treatment with the diuretic, furosemide. Relative to sodium-deplete intact rats, however, sodium-deplete adrenalectomized rats had a greater number of neurons expressing Fos in the organum vasculosum. Treatment of sodium-deplete rats, adrenalectomized or intact, with the angiotensin II-type 1 receptor antagonist, ZD7155, decreased sodium intake and Fos expression in the subfornical organ but not in the organum vasculosum of the lamina terminalis or median preoptic nucleus. In conclusion, the results demonstrated that activation of the brain nuclei located in the lamina terminalis of adrenalectomized rats was primarily related to sodium deficit and not to the absence of the mineralocorticoid hormones, although the adrenal hormones may have a role in limiting the activation of organum vasculosum of the lamina terminalis during sodium depletion. Furthermore, the results obtained with the administration of the angiotensin receptor antagonist are consistent with the proposal that sodium appetite of the sodium-deplete rat, adrenalectomized or intact, is mediated by circulating angiotensin II acting in the subfornic

    Topics: Adrenalectomy; Angiotensin Receptor Antagonists; Animals; Appetite; Body Weight; Corticosterone; Desoxycorticosterone; Eating; Male; Naphthyridines; Neurons; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Sodium Chloride; Subfornical Organ; Third Ventricle

2000