zd-6126 has been researched along with Hypoxia* in 3 studies
1 review(s) available for zd-6126 and Hypoxia
Article | Year |
---|---|
Vascular targeting agents as cancer therapeutics.
Vascular targeting agents (VTAs) for the treatment of cancer are designed to cause a rapid and selective shutdown of the blood vessels of tumors. Unlike antiangiogenic drugs that inhibit the formation of new vessels, VTAs occlude the pre-existing blood vessels of tumors to cause tumor cell death from ischemia and extensive hemorrhagic necrosis. Tumor selectivity is conferred by differences in the pathophysiology of tumor versus normal tissue vessels (e.g., increased proliferation and fragility, and up-regulated proteins). VTAs can kill indirectly the tumor cells that are resistant to conventional antiproliferative cancer therapies, i.e., cells in areas distant from blood vessels where drug penetration is poor, and hypoxia can lead to radiation and drug resistance. VTAs are expected to show the greatest therapeutic benefit as part of combined modality regimens. Preclinical studies have shown VTA-induced enhancement of the effects of conventional chemotherapeutic agents, radiation, hyperthermia, radioimmunotherapy, and antiangiogenic agents. There are broadly two types of VTAs, small molecules and ligand-based, which are grouped together, because they both cause acute vascular shutdown in tumors leading to massive necrosis. The small molecules include the microtubulin destabilizing drugs, combretastatin A-4 disodium phosphate, ZD6126, AVE8062, and Oxi 4503, and the flavonoid, DMXAA. Ligand-based VTAs use antibodies, peptides, or growth factors that bind selectively to tumor versus normal vessels to target tumors with agents that occlude blood vessels. The ligand-based VTAs include fusion proteins (e.g., vascular endothelial growth factor linked to the plant toxin gelonin), immunotoxins (e.g., monoclonal antibodies to endoglin conjugated to ricin A), antibodies linked to cytokines, liposomally encapsulated drugs, and gene therapy approaches. Combretastatin A-4 disodium phosphate, ZD6126, AVE8062, and DMXAA are undergoing clinical evaluation. Phase I monotherapy studies have shown that the agents are tolerated with some demonstration of single agent efficacy. Because efficacy is expected when the agents are used with conventional chemotherapeutic drugs or radiation, the results of Phase II combination studies are eagerly awaited. Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Cell Division; Clinical Trials as Topic; Diphosphates; Genetic Therapy; Humans; Hypoxia; Immunotoxins; Ligands; Models, Biological; Necrosis; Neoplasms; Organophosphorus Compounds; Peptides; Radioimmunotherapy; Stilbenes; Time Factors; Up-Regulation; Xanthones | 2004 |
2 other study(ies) available for zd-6126 and Hypoxia
Article | Year |
---|---|
Imaging and modulating antisense microdistribution in solid human xenograft tumor models.
The tumor microenvironment is complex and heterogeneous, populated by tortuous irregular vasculature, hypoxic cells, and necrotic regions. These factors can all contribute to the biodistribution difficulties encountered by most cancer therapeutic agents. Antisense oligodeoxynucleotides (ASO) are a class of therapeutics where limited information is available about their distribution within a solid tumor environment.. To assess ASO distribution, a fluorescein-labeled phosphorothionated ASO based on the G3139 mismatch control was injected systemically (i.v.) into tumor-bearing severe combined immunodeficient mice. Hoechst 33342 was injected i.v. to visualize active vasculature. Unstained sections were imaged through tiled fluorescence stereomicroscopy and then quantitated using novel algorithms. Tumor sections from four human tumor models were examined (CaSki, DU-145, C666-1, and C15) for hypoxia, apoptosis/necrosis, and morphology.. For all four tumors, ASO accumulated within regions of hypoxia, necrosis, and apoptosis. Scatter plots of ASO versus active vasculature generated for each individual tumor revealed a consistent pattern of distribution of the ASO within each model. In C666-1 xenografts, the slopes of these scatter plots were significantly reduced from 0.41 to 0.16 when pretreated with the antivascular agent ZD6126 48 h before ASO injection. This was accompanied by the formation of large disseminated necrotic regions in the tumor, along with a 13.1 mmHg reduction in interstitial fluid pressure.. These data suggest the possibility that these algorithms might offer a generalizable and objective methodology to describe the distribution of molecular therapeutic agents within a tumor microenvironment and to quantitatively assess distribution changes in response to combination therapies. Topics: Algorithms; Animals; Benzimidazoles; Cell Line, Tumor; Cell Proliferation; Diagnostic Imaging; Humans; Hypoxia; Mice; Mice, SCID; Necrosis; Neoplasm Transplantation; Oligonucleotides, Antisense; Organophosphorus Compounds; Xenograft Model Antitumor Assays | 2007 |
Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma.
The effect of ZD6126 on tumor oxygen tension and tumor growth delay in combination with ionizing radiation was examined in the human U87 glioblastoma tumor model. Resistance to ZD6126 treatment was investigated with the nitric oxide synthase inhibitor, l-N(G)-nitroarginine methyl ester (hydrochloride; l-NAME/active form, l-NNA).. U87 human xenografts were grown in athymic nude mice. ZD6126 was given with or without l-NNA. Tumor oxygen tension was measured using the Oxford Oxylite (Oxford, England) fiberoptic probe system. Tumor volume was determined by direct measurement with calipers and calculated by the formula [(smallest diameter(2) x widest diameter)/2].. Multiple doses of ZD6126 treatment (three doses) had a significant effect on tumor growth delay, reducing the average daily tumor growth rate from 29% to 16%. When given 1 hour before radiation, ZD6126 caused an acute increase in hypoxia in U87 tumors, and reduced tumor growth delay compared with that of radiation alone. The combination of ZD6126 given after radiation, either as a single dose or in multiple doses, had greater or similar antitumor activity compared with radiation alone. Twenty-four hours after administration, a single dose of ZD6126 induced little (10 +/- 8%) necrosis in U87 xenografts. l-NNA, when given in combination with ZD6126, significantly enhanced the effectiveness of ZD6126 in inducing tumor necrosis.. Our observation that ZD6126-induced tumor hypoxia can decrease radiation response when ZD6126 is given prior to radiation indicates the importance of scheduling. Our findings suggest that the optimal therapeutic benefit of ZD6126 plus radiation in human glioblastoma may require multiple dosing in combination with a nitric oxide synthase inhibitor, to be scheduled following radiotherapy. Topics: Angiogenesis Inhibitors; Animals; Blood Vessels; Brain Neoplasms; Combined Modality Therapy; Drug Therapy, Combination; Enzyme Inhibitors; Glioblastoma; Humans; Hypoxia; Mice; Mice, Nude; Necrosis; Neovascularization, Pathologic; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Organophosphorus Compounds; Oxygen; Radiation Tolerance; Radiation, Ionizing; Transplantation, Heterologous; Tumor Cells, Cultured; Vascular Endothelial Growth Factor A | 2005 |