zd-6126 has been researched along with Carcinoma--Non-Small-Cell-Lung* in 2 studies
1 review(s) available for zd-6126 and Carcinoma--Non-Small-Cell-Lung
Article | Year |
---|---|
Vascular-targeting agents and radiation therapy in lung cancer: where do we stand in 2005?
With recent Food and Drug Administration approval of the anti-vascular endothelial growth factor (VEGF) antibody for the treatment of colon cancer, it may be possible to achieve similar progress in the treatment of locally advanced lung cancer. Antiangiogenic therapies in the clinic are a reality, and it is important to demonstrate that they can be used safely with conventional modalities, including radiation therapy (RT). Strategies under scrutiny in preclinical and clinical studies include the use of endogenous inhibitors of angiogenesis, use of agents that target VEGF and VEGF receptor signaling, targeting endothelial-related integrins during angiogenesis, and targeting the preexisting immature vessels growing within tumors (ie, vascular targeting). Regardless of the approach, it is necessary to address whether angiogenesis is a consistent phenomenon within the lung parenchyma around a cancer and a relevant target and whether inhibiting angiogenesis will improve current lung cancer therapies without increasing toxicity. Vascular-targeting agents (VTAs) are an interesting class of agents that have the potential to enhance RT, but their clinical promise has yet to be realized. In preclinical models, these agents selectively destroy the tumor vasculature, initiating a rapid centralized necrosis within established tumors. Characteristically, after treatment with VTAs, a rim of viable tumor cells remains at the periphery of the tumor, which remains well perfused and should therefore be relatively sensitive to radiation-induced cytotoxicity. This review will focus on VTAs in the treatment of lung cancer and includes a discussion of combination studies with RT in the laboratory and some of the hurdles in the clinical application of these agents. Topics: Angiogenesis Inhibitors; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Combined Modality Therapy; Humans; Lung Neoplasms; Neovascularization, Pathologic; Organophosphorus Compounds; Vascular Endothelial Growth Factors; Xanthones | 2005 |
1 other study(ies) available for zd-6126 and Carcinoma--Non-Small-Cell-Lung
Article | Year |
---|---|
Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft
Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model.. Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody.. ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis, substantially increasing the level of necrosis seen when combined with radiation therapy. The combination of radiation therapy, ZD6126, and ZD1839 induced the greatest effects on tumor growth and angiogenesis.. This first report shows that a selective vascular-targeting agent (ZD6126) + an anti-epidermal growth factor receptor agent (ZD1839) and radiation have additive in vivo effects in a human cancer model. Targeting the tumor vasculature offers an excellent strategy to enhance radiation cytotoxicity. Polytargeted therapy with agents that interfere with both growth factor and angiogenic signaling warrants further investigation. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Endothelium, Vascular; Enzyme Inhibitors; Epidermal Growth Factor; ErbB Receptors; Female; Gefitinib; Immunohistochemistry; Ki-67 Antigen; Lung Neoplasms; Mice; Mice, Inbred BALB C; Mice, Nude; Necrosis; Neoplasm Transplantation; Neovascularization, Pathologic; Organophosphorus Compounds; Protein Kinase Inhibitors; Quinazolines; Signal Transduction; Time Factors | 2004 |