zaprinast and Nerve-Degeneration

zaprinast has been researched along with Nerve-Degeneration* in 2 studies

Other Studies

2 other study(ies) available for zaprinast and Nerve-Degeneration

ArticleYear
Cyclic GMP phosphodiesterase inhibition alters the glial inflammatory response, reduces oxidative stress and cell death and increases angiogenesis following focal brain injury.
    Journal of neurochemistry, 2010, Volume: 112, Issue:3

    Recent evidence obtained in cultured glial cells indicates that cGMP-mediated pathways regulate cytoskeleton dynamics, glial fibrillary acidic protein expression and motility in astrocytes, as well as inflammatory gene expression in microglia, suggesting a role in the regulation of the glial reactive phenotype. The aim of this work was to examine if cGMP regulates the glial inflammatory response in vivo following CNS damage caused by a focal cryolesion onto the cortex in rats. Results show that treatment with the cGMP phosphodiesterase inhibitor zaprinast (10 mg/kg i.p.) 2 h before and 24 and 48 h after the lesion results 3 days post-lesion in notably enhanced astrogliosis manifested by increased glial fibrillary acidic protein immunoreactivity and protein levels around the lesion. In contrast, zaprinast decreased the number of round/ameboid lectin-positive cells and the expression of the activated microglia/macrophage markers Iba-1 and CD11b indicating decreased recruitment and activation of these cells. This altered inflammatory response is accompanied by a decrease in protein oxidative stress, apoptotic cell death and neuronal degeneration. In addition, zaprinast enhanced angiogenesis in the lesioned cortex probably as a result of vascular endothelial growth factor expression in reactive astrocytes. These results suggest that regulation of the glial inflammatory response may contribute to the reported neuroprotective effects of cGMP-phosphodiesterase inhibitors in brain injury.

    Topics: Animals; Brain Injuries; Calcium-Binding Proteins; CD11b Antigen; Cell Count; Cell Death; Cerebral Cortex; Cryosurgery; Disease Models, Animal; Drug Administration Schedule; In Situ Nick-End Labeling; Lectins; Male; Microfilament Proteins; Neovascularization, Physiologic; Nerve Degeneration; Neuroglia; Oxidative Stress; Phosphodiesterase Inhibitors; Purinones; Rats; Rats, Sprague-Dawley; Time Factors; Vascular Endothelial Growth Factor A

2010
Excessive activation of cyclic nucleotide-gated channels contributes to neuronal degeneration of photoreceptors.
    The European journal of neuroscience, 2005, Volume: 22, Issue:5

    In different animal models, photoreceptor degeneration was correlated to an abnormal increase in cGMP concentration. The cGMP-induced photoreceptor toxicity was demonstrated by applying the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine on retinal explants. To assess the role of cGMP-gated channels in this cGMP toxicity, the Ca(2+) channel blockers verapamil and L- and D-diltiazem, which block cGMP-gated channels with different efficacies, were applied to in vitro animal models of photoreceptor degeneration. These models included: (i) adult rat retinal explants incubated with zaprinast, a more specific inhibitor of the rod phosphodiesterase than 3-isobutyl-1-methylxanthine and (ii) rd mouse retinal explants. Photoreceptor apoptosis was assessed by terminal dUTP nick end labelling and caspase 3 activation. Effects of the blockers on the synaptic rod Ca(2+) channels were measured by patch-clamp recording. In the zaprinast-induced photoreceptor degeneration model, both diltiazem isomers rescued photoreceptors whereas verapamil had no influence. Their neuroprotective efficacy was correlated to their inhibition of cGMP-gated channels (l-diltiazem>d-diltiazem>verapamil=0). In contrast, all three Ca(2+) channel blockers suppressed rod Ca(2+) channel currents similarly. This suppression of the currents by the diltiazem isomers was very weak (16.5%) at the neuroprotective concentration (10 microm). In rd retinal explants, both diltiazem isomers also slowed down rod degeneration in contrast to verapamil. L-diltiazem exhibited this effect at concentrations ranging from 1 to 20 microm. This study further supports the photoreceptor neuroprotection by diltiazem particularly in the rd mouse retina, whereas the absence of neuroprotection by verapamil further suggests the role of cGMP-gated channel activation in the induction of photoreceptor degeneration.

    Topics: 1-Methyl-3-isobutylxanthine; Animals; Animals, Newborn; Blotting, Western; Cadmium Chloride; Calcium Channel Blockers; Cell Death; Cells, Cultured; Cyclic Nucleotide-Gated Cation Channels; Diltiazem; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; In Situ Nick-End Labeling; In Vitro Techniques; Ion Channels; Mice; Mice, Mutant Strains; Nerve Degeneration; Neuroglia; Phosphodiesterase Inhibitors; Photoreceptor Cells; Purinones; Rats; Rats, Wistar; Swine; Verapamil

2005