ys-121 and Peritonitis

ys-121 has been researched along with Peritonitis* in 1 studies

Other Studies

1 other study(ies) available for ys-121 and Peritonitis

ArticleYear
Aminothiazole-featured pirinixic acid derivatives as dual 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 inhibitors with improved potency and efficiency in vivo.
    Journal of medicinal chemistry, 2013, Nov-27, Volume: 56, Issue:22

    Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO) is currently pursued as potential pharmacological strategy for treatment of inflammation and cancer. Here we present a series of 26 novel 2-aminothiazole-featured pirinixic acid derivatives as dual 5-LO/mPGES-1 inhibitors with improved potency (exemplified by compound 16 (2-[(4-chloro-6-{[4-(naphthalen-2-yl)-1,3-thiazol-2-yl]amino}pyrimidin-2-yl)sulfanyl]octanoic acid) with IC50 = 0.3 and 0.4 μM, respectively) and bioactivity in vivo. Computational analysis presumes binding sites of 16 at the tip of the 5-LO catalytic domain and within a subpocket of the mPGES-1 active site. Compound 16 (10 μM) hardly suppressed cyclooxygenase (COX)-1/2 activities, failed to inhibit 12/15-LOs, and is devoid of radical scavenger properties. Finally, compound 16 reduced vascular permeability and inflammatory cell infiltration in a zymosan-induced mouse peritonitis model accompanied by impaired levels of cysteinyl-leukotrienes and prostaglandin E2. Together, 2-aminothiazole-featured pirinixic acids represent potent dual 5-LO/mPGES-1 inhibitors with an attractive pharmacological profile as anti-inflammatory drugs.

    Topics: Animals; Arachidonate 5-Lipoxygenase; Binding Sites; Drug Design; Humans; Hydrophobic and Hydrophilic Interactions; Inhibitory Concentration 50; Intramolecular Oxidoreductases; Lipoxygenase Inhibitors; Male; Mice; Microsomes; Models, Molecular; Peritonitis; Prostaglandin-E Synthases; Protein Conformation; Pyrimidines; Structure-Activity Relationship; Thiazoles; Zymosan

2013