yil-781 and Disease-Models--Animal

yil-781 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for yil-781 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Abnormal response to the anorexic effect of GHS-R inhibitors and exenatide in male Snord116 deletion mouse model for Prader-Willi syndrome.
    Endocrinology, 2014, Volume: 155, Issue:7

    Prader-Willi syndrome (PWS) is a genetic disease characterized by persistent hunger and hyperphagia. The lack of the Snord116 small nucleolar RNA cluster has been identified as the major contributor to PWS symptoms. The Snord116 deletion (Snord116del) mouse model manifested a subset of PWS symptoms including hyperphagia and hyperghrelinemia. In this study, male Snord116del mice were characterized and tested for their acute and chronic responses to anorexic substances related to the ghrelin pathway. In comparison with their wild-type littermates, the food intake rate of Snord116del mice was 14% higher when fed ad libitum, and 32% to 49% higher within 12 hours after fasting. Fasted Snord116del mice were less sensitive to the acute anorexic effect of competitive antagonist [d-Lys(3)]-GHRP6, YIL-781, and reverse agonist [d-Arg(1),d-Phe(5),d-Trp(7,9),Leu(11)]-substance P (SPA) of ghrelin receptor GHS-R. All 3 GHS-R inhibitors failed to inhibit chronic food intake of either Snord116del or wild-type mice due to rapid adaptation. Although fasted Snord116del mice had normal sensitivity to the acute anorexic effect of glucagon-like peptide 1 receptor agonist exenatide, those fed ad libitum required a higher dose and more frequent delivery to achieve ∼15% suppression of long-term food intake in comparison with wild-type mice. Ghrelin, however, is unlikely to be essential for the anorexic effect of exenatide in fed mice, as shown by the fact that exenatide did not reduce ghrelin levels in fed mice and food intake of ghrelin(-/-) mice fed ad libitum could be suppressed by exenatide. In conclusion, this study suggests that GHS-R may not be an effective therapeutic target, and in contrast, exenatide may produce anorexic effect in PWS individuals.

    Topics: Analysis of Variance; Animals; Anorexia; Disease Models, Animal; Eating; Exenatide; Fasting; Ghrelin; Humans; Hyperphagia; Hypoglycemic Agents; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oligopeptides; Peptides; Piperidines; Prader-Willi Syndrome; Quinazolinones; Receptors, Ghrelin; RNA, Small Nucleolar; Substance P; Venoms

2014