yersiniabactin has been researched along with Urinary-Tract-Infections* in 7 studies
7 other study(ies) available for yersiniabactin and Urinary-Tract-Infections
Article | Year |
---|---|
Contribution of yersiniabactin to the virulence of an Escherichia coli sequence type 69 ("clonal group A") cystitis isolate in murine models of urinary tract infection and sepsis.
Escherichia coli sequence type 69 (ST69; "clonal group A") is an important extraintestinal pathogen. To clarify the yersiniabactin siderophore system's role in ST69's extraintestinal virulence we compared a wild-type ST69 cystitis isolate, isogenic irp2 (yersiniabactin) mutants, and irp2-complemented mutants in murine models of sepsis and urinary tract infection (UTI). irp2 mutants were attenuated mildly in the UTI model and profoundly in the sepsis model. In both models, complementation with a functional copy of irp2 restored full parental virulence. These findings suggest that in ST69 the yersiniabactin system has a minor role in urovirulence and a major role in sepsis causation. Topics: Animals; Cystitis; Disease Models, Animal; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Female; Gene Deletion; Genetic Complementation Test; Iron Regulatory Protein 2; Mice; Mutation; Phenols; Sepsis; Thiazoles; Urinary Tract Infections; Virulence; Virulence Factors | 2018 |
Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel.
Invasive Gram-negative bacteria often express multiple virulence-associated metal ion chelators to combat host-mediated metal deficiencies. Topics: Copper; Escherichia coli Infections; Genomic Islands; Humans; Iron; Klebsiella; Phenols; Thiazoles; Urinary Tract Infections; Uropathogenic Escherichia coli; Yersinia pestis | 2018 |
Siderophore Biosynthesis Governs the Virulence of Uropathogenic Escherichia coli by Coordinately Modulating the Differential Metabolism.
Urinary tract infections impose substantial health burdens on women worldwide. Urinary tract infections often incur a high risk of recurrence and antibiotic resistance, and uropathogenic E. coli accounts for approximately 80% of clinically acquired cases. The diagnosis of, treatment of, and drug development for urinary tract infections remain substantial challenges due to the complex pathogenesis of this condition. The clinically isolated UPEC 83972 strain was found to produce four siderophores: yersiniabactin, aerobactin, salmochelin, and enterobactin. The biosyntheses of some of these siderophores implies that the virulence of UPEC is mediated via the targeting of primary metabolism. However, the differential modulatory roles of siderophore biosyntheses on the differential metabolomes of UPEC and non-UPEC strains remain incompletely understood. In the present study, we sought to investigate how the differential metabolomes can be used to distinguish UPEC from non-UPEC strains and to determine the associated regulatory roles of siderophore biosynthesis. Our results are the first to demonstrate that the identified differential metabolomes strongly differentiated UPEC from non-UPEC strains. Furthermore, we performed metabolome assays of mutants with different patterns of siderophore deletions; the data revealed that the mutations of all four siderophores exerted a stronger modulatory role on the differential metabolomes of the UPEC and non-UPEC strains relative to the mutation of any single siderophore and that this modulatory role primarily involved amino acid metabolism, oxidative phosphorylation in the carbon fixation pathway, and purine and pyrimidine metabolism. Surprisingly, the modulatory roles were strongly dependent on the type and number of mutated siderophores. Taken together, these results demonstrated that siderophore biosynthesis coordinately modulated the differential metabolomes and thus may indicate novel targets for virulence-based diagnosis, therapeutics, and drug development related to urinary tract infections. Topics: Amino Acids; Bacterial Proteins; Carbon Cycle; Citric Acid Cycle; Enterobactin; Escherichia coli Infections; Female; Gene Deletion; Gene Expression; Glucosides; Humans; Hydroxamic Acids; Magnetic Resonance Spectroscopy; Metabolome; Oxidative Phosphorylation; Phenols; Purines; Pyrimidines; Siderophores; Thiazoles; Urinary Tract Infections; Uropathogenic Escherichia coli; Virulence | 2016 |
Blocking yersiniabactin import attenuates extraintestinal pathogenic Escherichia coli in cystitis and pyelonephritis and represents a novel target to prevent urinary tract infection.
The emergence and spread of extended-spectrum beta-lactamases and carbapenemases among common bacterial pathogens are threatening our ability to treat routine hospital- and community-acquired infections. With the pipeline for new antibiotics virtually empty, there is an urgent need to develop novel therapeutics. Bacteria require iron to establish infection, and specialized pathogen-associated iron acquisition systems like yersiniabactin, common among pathogenic species in the family Enterobacteriaceae, including multidrug-resistant Klebsiella pneumoniae and pathogenic Escherichia coli, represent potentially novel therapeutic targets. Although the yersiniabactin system was recently identified as a vaccine target for uropathogenic E. coli (UPEC)-mediated urinary tract infection (UTI), its contribution to UPEC pathogenesis is unknown. Using an E. coli mutant (strain 536ΔfyuA) unable to acquire yersiniabactin during infection, we established the yersiniabactin receptor as a UPEC virulence factor during cystitis and pyelonephritis, a fitness factor during bacteremia, and a surface-accessible target of the experimental FyuA vaccine. In addition, we determined through transcriptome sequencing (RNA-seq) analyses of RNA from E. coli causing cystitis in women that iron acquisition systems, including the yersiniabactin system, are highly expressed by bacteria during natural uncomplicated UTI. Given that yersiniabactin contributes to the virulence of several pathogenic species in the family Enterobacteriaceae, including UPEC, and is frequently associated with multidrug-resistant strains, it represents a promising novel target to combat antibiotic-resistant infections. Topics: Animals; Antibodies, Monoclonal; Bacterial Vaccines; Cystitis; Escherichia coli Infections; Escherichia coli Proteins; Female; Humans; Mice; Mice, Inbred BALB C; Mice, Inbred CBA; Phenols; Pyelonephritis; Receptors, Cell Surface; Thiazoles; Urinary Tract Infections; Uropathogenic Escherichia coli | 2015 |
Immunization with the yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection.
Urinary tract infections (UTI) are common and represent a substantial economic and public health burden. Roughly 80% of these infections are caused by a heterogeneous group of uropathogenic Escherichia coli (UPEC) strains. Antibiotics are standard therapy for UTI, but a rise in antibiotic resistance has complicated treatment, making the development of a UTI vaccine more urgent. Iron receptors are a promising new class of vaccine targets for UTI, as UPEC require iron to colonize the iron-limited host urinary tract and genes encoding iron acquisition systems are highly expressed during infection. Previously, three of six UPEC siderophore and heme receptors were identified as vaccine candidates by intranasal immunization in a murine model of ascending UTI. To complete the assessment of iron receptors as vaccine candidates, an additional six UPEC iron receptors were evaluated. Of the six vaccine candidates tested in this study (FyuA, FitA, IroN, the gene product of the CFT073 locus c0294, and two truncated derivatives of ChuA), only FyuA provided significant protection (P = 0.0018) against UPEC colonization. Intranasal immunization induced a robust and long-lived humoral immune response. In addition, the levels of FyuA-specific serum IgG correlated with bacterial loads in the kidneys [Spearman's rank correlation coefficient ρ(14) = -0.72, P = 0.0018], providing a surrogate of protection. FyuA is the fourth UPEC iron receptor to be identified from our screens, in addition to IutA, Hma, and IreA, which were previously demonstrated to elicit protection against UPEC challenge. Together, these iron receptor antigens will facilitate the development of a broadly protective, multivalent UTI vaccine to effectively target diverse strains of UPEC. Topics: Administration, Intranasal; Animals; Antibodies, Bacterial; Antigens, Bacterial; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Female; Immunity, Humoral; Immunization; Immunoglobulin A; Immunoglobulin G; Iron; Mice; Mice, Inbred CBA; Phenols; Pyelonephritis; Receptors, Cell Surface; Siderophores; Thiazoles; Urinary Tract Infections; Uropathogenic Escherichia coli; Vaccination | 2013 |
Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis.
Proteus mirabilis causes complicated urinary tract infections (UTIs). While the urinary tract is an iron-limiting environment, iron acquisition remains poorly characterized for this uropathogen. Microarray analysis of P. mirabilis HI4320 cultured under iron limitation identified 45 significantly upregulated genes (P ≤ 0.05) that represent 21 putative iron-regulated systems. Two gene clusters, PMI0229-0239 and PMI2596-2605, encode putative siderophore systems. PMI0229-0239 encodes a non-ribosomal peptide synthetase-independent siderophore system for producing a novel siderophore, proteobactin. PMI2596-2605 are contained within the high-pathogenicity island, originally described in Yersinia pestis, and encodes proteins with apparent homology and organization to those involved in yersiniabactin production and uptake. Cross-feeding and biochemical analysis shows that P. mirabilis is unable to utilize or produce yersiniabactin, suggesting that this yersiniabactin-related locus is functionally distinct. Only disruption of both systems resulted in an in vitro iron-chelating defect; demonstrating production and iron-chelating activity for both siderophores. These findings clearly show that proteobactin and the yersiniabactin-related siderophore function as iron acquisition systems. Despite the activity of both siderophores, only mutants lacking the yersiniabactin-related siderophore have reduced fitness in vivo. The fitness requirement for the yersiniabactin-related siderophore during UTI shows, for the first time, the importance of siderophore production in vivo for P. mirabilis. Topics: Animals; Culture Media; Female; Gene Expression Regulation, Bacterial; Iron; Mice; Mice, Inbred CBA; Multigene Family; Mutation; Oligonucleotide Array Sequence Analysis; Phenols; Proteus Infections; Proteus mirabilis; RNA, Bacterial; Siderophores; Thiazoles; Urinary Tract Infections | 2010 |
Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli.
Escherichia coli is the most frequent microorganism involved in urinary tract infection (UTI). Acute UTI caused by uropathogenic E. coli (UPEC) can lead to recurrent infection, which can be defined as either re-infection or relapse. E. coli strains causing relapse (n = 27) and re-infection (n = 53) were analysed. In-vitro production of biofilm, yersiniabactin and aerobactin was significantly more frequent among strains causing relapse. Biofilm assays may be helpful in selecting patients who require a therapeutic approach to eradicate persistent biofilm-forming E. coli strains and prevent subsequent relapses. Topics: Adult; Aged; Aged, 80 and over; Biofilms; Escherichia coli; Escherichia coli Infections; Female; Humans; Hydroxamic Acids; Middle Aged; Phenols; Thiazoles; Urinary Tract Infections; Virulence | 2006 |