y-39983 has been researched along with Disease-Models--Animal* in 5 studies
5 other study(ies) available for y-39983 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
A Compact Whole-Eye Perfusion System to Evaluate Pharmacologic Responses of Outflow Facility.
To discover novel therapies that lower IOP by increasing aqueous humor outflow facility, ex vivo ocular perfusion systems provide a valuable tool. However, currently available designs are limited by their throughput. Here we report the development of a compact, scalable perfusion system with improved throughput and its validation using bovine and porcine eyes.. At a fixed IOP of 6 mm Hg, flow rate was measured by flow sensors. We validated the system by measuring the outflow responses to Y-39983 (a Rho kinase inhibitor), endothelin-1 (ET-1), ambrisentan (an antagonist for endothelin receptor A [ETA]), sphigosine-1-phosphate (S1P), JTE-013 (antagonist for S1P receptor 2 [S1P2]), S-nitroso-N-acetylpenicillamine (SNAP, a nitric oxide [NO] donor), and 3-Morpholino-sydnonimine (SIN-1, another NO donor).. The instrument design enabled simultaneous measurements of 20 eyes with a footprint of 1 m2. Relative to vehicle control, Y-39983 increased outflow by up to 31% in calf eyes. On the contrary, ET-1 decreased outflow by up to 79%, a response that could be blocked by pretreatment with ambrisentan, indicating a role for ETA receptors. Interestingly, the effect of ET-1 was also inhibited by up to 70% to 80% by pretreatment with NO donors, SNAP and SIN-1. In addition to testing in calf eyes, similar effects of ET-1 and ambrisentan were observed in adult bovine and porcine eyes.. The compact eye perfusion platform provides an opportunity to efficiently identify compounds that influence outflow facility and may lead to the discovery of new glaucoma therapies. Topics: Animals; Aqueous Humor; Cattle; Computer-Aided Design; Disease Models, Animal; Endothelin-1; Equipment Design; Glaucoma; Intraocular Pressure; Perfusion; Pyrazoles; Pyridines; Swine; Trabecular Meshwork | 2017 |
In vivo optimization of 2,3-diaminopyrazine Rho Kinase inhibitors for the treatment of glaucoma.
A series of 2,3,6-pyrazine Rho Kinase inhibitors were optimized for in vivo activity for topical ocular dosing. Modifications of the 2-(piperazin-1-yl)pyrazine derivatives produced compounds with improved solubility and physicochemical properties. Modifications of the 6-pyrazine substituent led to improvements in in vitro potency. Compound 9 had the best in vitro and in vivo potency of EC50=260 nM with a 30% reduction of IOP in a non-human primate model at a dose of 0.33%. Topics: Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Glaucoma; Guinea Pigs; Humans; Inhibitory Concentration 50; Models, Molecular; Molecular Structure; Protein Kinase Inhibitors; Pyrazines; Pyridines; rho-Associated Kinases | 2014 |
AMA0076, a novel, locally acting Rho kinase inhibitor, potently lowers intraocular pressure in New Zealand white rabbits with minimal hyperemia.
To determine whether ROCK inhibition for the treatment of glaucoma can be improved by using novel, locally acting Rho kinase (ROCK) inhibitors, such as AMA0076, that lower IOP without inducing hyperemia.. On-target potency of AMA0076 was compared with other ROCK inhibitors (Y-27632 and Y-39983) and conversion of AMA0076 into its functionally inactive metabolite was evaluated in rabbit eye tissues. Human trabecular meshwork (HTM) cell morphology, actin filaments, and focal adhesion were studied in vitro after exposure to AMA0076. The effect of AMA0076 on IOP was investigated in normotensive rabbits and a new, acute hypertensive rabbit model. Intraocular pressure lowering efficacy of AMA0076 was compared with pharmacologic treatments. Hyperemia after single topical dosing of AMA0076 and Y-39983 was scored.. AMA0076 and Y-39983 showed similar on-target potency. AMA0076 was most stable in aqueous humor and converted into its metabolite in other eye tissues. Exposure of HTM cells to AMA0076 led to significant and reversible changes in cell shape and a decrease in actin stress fibers and focal adhesions. Both AMA0076 and Y-39983 provided an equivalent IOP control. Compared with latanoprost and bimatoprost, AMA0076 was more potent in preventing the IOP elevation in the acute hypertensive rabbit model. The degree of hyperemia was significantly lower in rabbits treated with AMA0076 then with Y-39983.. AMA0076 is a locally acting ROCK inhibitor that is able to induce altered cellular behavior of HTM cells. Administration of AMA0076 effectively reduces IOP in ocular normotensive and acute hypertensive rabbits without causing distinct hyperemia. Topics: Actins; Amides; Animals; Antihypertensive Agents; Benzoates; Conjunctiva; Disease Models, Animal; Focal Adhesions; Hyperemia; Intraocular Pressure; Male; Ocular Hypertension; Protein Kinase Inhibitors; Pyridines; Rabbits; rho-Associated Kinases; Tonometry, Ocular; Trabecular Meshwork; Vinculin | 2014 |
Benzothiophene containing Rho kinase inhibitors: Efficacy in an animal model of glaucoma.
We identified a new benzothiophene containing Rho kinase inhibitor scaffold in an ultra high-throughput enzymatic activity screen. SAR studies, driven by a novel label-free cellular impedance assay, were used to derive 39, which substantially reduced intraocular pressure in a monkey model of glaucoma-associated ocular hypertension. Topics: Animals; Disease Models, Animal; Glaucoma; Haplorhini; HeLa Cells; Humans; Intraocular Pressure; Ocular Hypertension; Protein Kinase Inhibitors; rho-Associated Kinases; Thiophenes | 2010 |