xenin-25 has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for xenin-25 and Disease-Models--Animal
Article | Year |
---|---|
Ψ-Xenin-6 enhances sitagliptin effectiveness, but does not improve glucose tolerance.
Recent studies have characterised the biological properties and glucose-dependent insulinotropic polypeptide (GIP) potentiating actions of an enzymatically stable, C-terminal hexapeptide fragment of the gut hormone xenin, namely Ψ-xenin-6. Given the primary therapeutic target of clinically approved dipeptidyl peptidase-4 (DPP-4) inhibitor drugs is augmentation of the incretin effect, the present study has assessed the capacity of Ψ-xenin-6 to enhance the antidiabetic efficacy of sitagliptin in high fat fed (HFF) mice. Individual administration of either sitagliptin or Ψ-xenin-6 alone for 18 days resulted in numerous metabolic benefits and positive effects on pancreatic islet architecture. As expected, sitagliptin therapy was associated with elevated circulating GIP and GLP-1 levels, with concurrent Ψ-xenin-6 not elevating these hormones or enhancing DPP-4 inhibitory activity of the drug. However, combined sitagliptin and Ψ-xenin-6 therapy in HFF mice was associated with further notable benefits, beyond that observed with either treatment alone. This included body weight change similar to lean controls, more pronounced and rapid benefits on circulating glucose and insulin as well as additional improvements in attenuating gluconeogenesis. Favourable effects on pancreatic islet architecture and peripheral insulin sensitivity were more apparent with combined therapy. Expression of hepatic genes involved in gluconeogenesis and insulin action were partially, or fully, restored to normal levels by the treatment regimens, with beneficial effects more prominent in the combination treatment group. These data demonstrate that combined treatment with Ψ-xenin-6 and sitagliptin did not alter glucose tolerance but does offer some metabolic advantages, which merit further consideration as a therapeutic option for type 2 diabetes. Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diet, High-Fat; Disease Models, Animal; Drug Therapy, Combination; Gastrointestinal Hormones; Hypoglycemic Agents; Insulin; Insulin Resistance; Mice; Neurotensin; Sitagliptin Phosphate | 2020 |
Sustained high-fat diet modulates inflammation, insulin signalling and cognition in mice and a modified xenin peptide ameliorates neuropathology in a chronic high-fat model.
To demarcate pathological events in the brain as a result of short-term to chronic high-fat-diet (HFD) feeding, which leads to cognitive impairment and neuroinflammation, and to assess the efficacy of Xenin-25[Lys(13)PAL] in chronic HFD-fed mice.. C57BL/6 mice were fed an HFD or a normal diet for 18 days, 34 days, 10 and 21 weeks. Cognition was assessed using novel object recognition and the Morris water maze. Markers of insulin signalling and inflammation were measured in brain and plasma using immunohistochemistry, quantitative PCR and multi-array technology. Xenin-25[Lys(13)PAL] was also administered for 5 weeks in chronic HFD-fed mice to assess therapeutic potential at a pathological stage.. Recognition memory was consistently impaired in HFD-fed mice and spatial learning was impaired in 18-day and 21-week HFD-fed mice. Gliosis, oxidative stress and IRS-1 pSer. HFD feeding modulates cognitive function, synapse density, inflammation and insulin resistance in the brain. Xenin-25[Lys(13)PAL] ameliorated markers of inflammation and insulin signalling dysregulation and may have therapeutic potential in the treatment of diseases associated with neuroinflammation or perturbed insulin signalling in the brain. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Behavior, Animal; Biomarkers; Brain; Cognition Disorders; Diet, High-Fat; Disease Models, Animal; Encephalitis; Exploratory Behavior; Gene Expression Regulation, Developmental; Immunohistochemistry; Insulin Resistance; Male; Maze Learning; Mice, Inbred C57BL; Nerve Tissue Proteins; Neurons; Neurotensin; Nootropic Agents; Oxidative Stress; Peptides; Random Allocation | 2018 |
Xenin-25[Lys13PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential.
Xenin-25 is co-secreted with glucose-dependent insulinotropic polypeptide (GIP) from intestinal K-cells following a meal. Xenin-25 is believed to play a key role in glucose homoeostasis and potentiate the insulinotropic effect of GIP.. This study investigated the effects of sub-chronic administration of the stable and longer-acting xenin-25 analogue, xenin-25[Lys(13)PAL] (25 nmol/kg), in diabetic mice fed with a high-fat diet.. Initial studies confirmed the significant persistent glucose-lowering (p < 0.05) and insulin-releasing (p < 0.05) actions of xenin-25[Lys(13)PAL] compared with native xenin-25. Interestingly, xenin-25 retained significant glucose-lowering activity in GIP receptor knockout mice. Twice-daily intraperitoneal (i.p.) injection of xenin-25[Lys(13)PAL] for 14 days had no significant effect on food intake or body weight in high-fat-fed mice. Non-fasting glucose and insulin levels were also unchanged, but overall glucose levels during an i.p. glucose tolerance and oral nutrient challenge were significantly (p < 0.05) lowered by xenin-25[Lys(13)PAL] treatment. These changes were accompanied by significant improvements in i.p. (p < 0.05) and oral (p < 0.001) nutrient-stimulated insulin concentrations. No appreciable changes in insulin sensitivity were observed between xenin-25[Lys(13)PAL] and saline-treated high-fat mice. However, xenin-25[Lys(13)PAL] treatment restored notable sensitivity to the biological actions of exogenous GIP injection. Consumption of O2, production of CO2, respiratory exchange ratio and energy expenditure were not altered by 14-day twice-daily treatment with xenin-25[Lys(13)PAL]. In contrast, ambulatory activity was significantly (p < 0.05 to p < 0.001) increased during the dark phase in xenin-25[Lys(13)PAL] mice compared with high-fat controls.. These data indicate that sustained administration of a stable analogue of xenin-25 exerts a spectrum of beneficial metabolic effects in high-fat-fed mice. Topics: Acetylation; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Energy Metabolism; Humans; Hypoglycemic Agents; Male; Mice; Neurotensin; Oxygen | 2015 |