xe-991--anthracenone and Parkinsonian-Disorders

xe-991--anthracenone has been researched along with Parkinsonian-Disorders* in 2 studies

Other Studies

2 other study(ies) available for xe-991--anthracenone and Parkinsonian-Disorders

ArticleYear
The Kv7/KCNQ channel blocker XE991 protects nigral dopaminergic neurons in the 6-hydroxydopamine rat model of Parkinson's disease.
    Brain research bulletin, 2018, Volume: 137

    The excitability of dopaminergic neurons in the substantia nigra pars compacta (SNc) that supply the striatum with dopamine (DA) determines the function of the nigrostriatal system for motor coordination. We previously showed that 4-pyridinylmethyl-9(10H)-anthracenone (XE991), a specific blocker of Kv7/KCNQ channels, enhanced the excitability of nigral DA neurons and resulted in attenuation of haloperidol-induced catalepsy in a Parkinson's disease (PD) rat model. However, whether XE991 exhibits neuroprotective effects towards DA neuron degeneration remains unknown. The aim of this study was to investigate the effects of Kv7/KCNQ channel blocker, XE991, on 6-hydroxydopamine (6-OHDA)-induced nigral DA neuron degeneration and motor dysfunction. Using immunofluorescence staining and western blotting, we showed that intracerebroventricular administration of XE991 prevented the 6-OHDA-induced decrease in tyrosine hydroxylase (TH)-positive neurons and TH protein expression in the SNc. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) also revealed that XE991 partly restored the levels of DA and its metabolites in the striatum. Moreover, XE991 decreased apomorphine (APO)-induced contralateral rotations, enhanced balance and coordination, and attenuated muscle rigidity in 6-OHDA-treated rats. Importantly, all neuroprotective effects by XE991 were abolished by co-application of Kv7/KCNQ channel opener retigabine and XE991. Thus, Kv7/KCNQ channel inhibition by XE991 can exert neuroprotective effects against 6-OHDA-induced degeneration of the nigrostriatal DA system and motor dysfunction.

    Topics: Animals; Anthracenes; Apomorphine; Corpus Striatum; Dopamine; Dopamine Agonists; Dopaminergic Neurons; Infusions, Intraventricular; KCNQ Potassium Channels; Male; Motor Activity; Muscle Rigidity; Neuroprotective Agents; Oxidopamine; Parkinsonian Disorders; Potassium Channel Blockers; Rats, Wistar; Substantia Nigra

2018
Reduction of an afterhyperpolarization current increases excitability in striatal cholinergic interneurons in rat parkinsonism.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, Apr-27, Volume: 31, Issue:17

    Striatal cholinergic interneurons show tonic spiking activity in the intact and sliced brain, which stems from intrinsic mechanisms. Because of it, they are also known as "tonically active neurons" (TANs). Another hallmark of TAN electrophysiology is a pause response to appetitive and aversive events and to environmental cues that have predicted these events during learning. Notably, the pause response is lost after the degeneration of dopaminergic neurons in animal models of Parkinson's disease. Moreover, Parkinson's disease patients are in a hypercholinergic state and find some clinical benefit in anticholinergic drugs. Current theories propose that excitatory thalamic inputs conveying information about salient sensory stimuli trigger an intrinsic hyperpolarizing response in the striatal cholinergic interneurons. Moreover, it has been postulated that the loss of the pause response in Parkinson's disease is related to a diminution of I(sAHP), a slow outward current that mediates an afterhyperpolarization following a train of action potentials. Here we report that I(sAHP) induces a marked spike-frequency adaptation in adult rat striatal cholinergic interneurons, inducing an abrupt end of firing during sustained excitation. Chronic loss of dopaminergic neurons markedly reduces I(sAHP) and spike-frequency adaptation in cholinergic interneurons, allowing them to fire continuously and at higher rates during sustained excitation. These findings provide a plausible explanation for the hypercholinergic state in Parkinson's disease. Moreover, a reduction of I(sAHP) may alter synchronization of cholinergic interneurons with afferent inputs, thus contributing to the loss of the pause response in Parkinson's disease.

    Topics: Acetylcholine; Action Potentials; Analysis of Variance; Animals; Anthracenes; Apamin; Ascorbic Acid; Barium; Computer Simulation; Corpus Striatum; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; In Vitro Techniques; Indoles; Interneurons; Male; Models, Neurological; Neuroprotective Agents; Oxidopamine; Parkinsonian Disorders; Pyridines; Rats; Rats, Sprague-Dawley; Substantia Nigra

2011