xe-991--anthracenone has been researched along with Disease-Models--Animal* in 11 studies
11 other study(ies) available for xe-991--anthracenone and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
DV21 decreases excitability of cortical pyramidal neurons and acts in epilepsy.
Epilepsy is one of the most common neurological disorders and the administration of antiepileptic drugs (AEDs) is the most common treatment. Although there are more than 15 AEDs available, a third of epilepsy patients remain refractory to available drugs, so novel effective drugs are needed. Here, we found that DV21, which is a natural triterpenoid compound extracted from plants of the Asclepiadaceae family, significantly decreased the incidence and stages of seizures in three classical drug-induced acute seizure models in C57BL/6 mice. Furthermore, we also found that the antiepileptic effect of DV21 might be partly mediated through reducing the excitability of cortical pyramidal neurons by increasing M current, which are low-threshold non-inactivating voltage-gated potassium currents. Moreover, the application of XE991, an inhibitor of M current, could block most the antiepileptic effect of DV21. Taken together, our results indicated that DV21 might be a novel leading compound for the treatment of epilepsy. Topics: Action Potentials; Animals; Anthracenes; Anticonvulsants; Cerebral Cortex; Disease Models, Animal; Drug Evaluation, Preclinical; Epilepsy; Injections, Intraventricular; Kainic Acid; Mice, Inbred C57BL; Pentylenetetrazole; Pilocarpine; Pyramidal Cells; Severity of Illness Index; Triterpenes; Zebrafish | 2017 |
Suppression of KCNQ/M (Kv7) potassium channels in the spinal cord contributes to the sensitization of dorsal horn WDR neurons and pain hypersensitivity in a rat model of bone cancer pain.
Primary and metastatic cancers that affect bones are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. In the present study, we investigated whether inhibition of KCNQ/M (Kv7) potassium channels in the spinal cord contributes to the development of bone cancer pain via sensitization of dorsal horn wide dynamic range (WDR) neurons. Using a rat model of bone cancer pain based on intratibial injection of MRMT-1 tumor cells, we observed a significant increase in C-fiber responses of dorsal horn WDR neurons in the MRMT-1 injected rats, indicating sensitization of spinal WDR neurons in bone cancer rats. Furthermore, we discovered that blockade of KCNQ/M channels in the spinal cord by local administration of XE-991, a specific KCNQ/M channel blocker, caused a robust increase in excitability of dorsal horn WDR neurons, while, producing obvious pain hypersensitivity in normal rats. On the contrary, activation of spinal KCNQ/M channels by retigabine, a selective KCNQ/M channel opener, not only inhibited the bone cancer‑induced hyperexcitability of dorsal horn WDR neurons, but also alleviated mechanical allodynia and thermal hyperalgesia in the bone cancer rats, while all of these effects of retigabine could be blocked by KCNQ/M-channel antagonist XE-991. All things considered, these results suggest that suppression of KCNQ/M channels in the spinal cord likely contributes to the development of bone cancer pain via sensitization of dorsal horn WDR neurons in rats following tumor cell inoculation. Topics: Acetylcholine; Animals; Anthracenes; Bone Neoplasms; Carbamates; Disease Models, Animal; Female; Hyperalgesia; KCNQ Potassium Channels; Membrane Transport Modulators; Neoplasm Transplantation; Pain; Phenylenediamines; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Spinal Cord | 2015 |
Thalamic Kv 7 channels: pharmacological properties and activity control during noxious signal processing.
The existence of functional K(v)7 channels in thalamocortical (TC) relay neurons and the effects of the K(+)-current termed M-current (I(M)) on thalamic signal processing have long been debated. Immunocytochemical evidence suggests their presence in this brain region. Therefore, we aimed to verify their existence, pharmacological properties and function in regulating activity in neurons of the ventrobasal thalamus (VB).. Characterization of K(v)7 channels was performed by combining in vitro, in vivo and in silico techniques with a pharmacological approach. Retigabine (30 μM) and XE991 (20 μM), a specific K(v)7 channel enhancer and blocker, respectively, were applied in acute brain slices during electrophysiological recordings. The effects of intrathalamic injection of retigabine (3 mM, 300 nL) and/or XE991 (2 mM, 300 nL) were investigated in freely moving animals during hot-plate tests by recording behaviour and neuronal activity.. K(v)7.2 and K(v)7.3 subunits were found to be abundantly expressed in TC neurons of mouse VB. A slow K(+)-current with properties of IM was activated by retigabine and inhibited by XE991. K(v)7 channel activation evoked membrane hyperpolarization, a reduction in tonic action potential firing, and increased burst firing in vitro and in computational models. Single-unit recordings and pharmacological intervention demonstrated a specific burst-firing increase upon I(M) activation in vivo. A K(v)7 channel-mediated increase in pain threshold was associated with fewer VB units responding to noxious stimuli, and increased burst firing in responsive neurons.. K(v)7 channel enhancement alters somatosensory activity and may reflect an anti-nociceptive mechanism during acute pain processing. Topics: Action Potentials; Acute Pain; Animals; Anthracenes; Brain; Carbamates; Disease Models, Animal; KCNQ Potassium Channels; KCNQ2 Potassium Channel; KCNQ3 Potassium Channel; Mice; Mice, Inbred C57BL; Neurons; Pain Threshold; Phenylenediamines; Thalamus | 2015 |
Activation of peripheral KCNQ channels attenuates inflammatory pain.
Refractory chronic pain dramatically reduces the quality of life of patients. Existing drugs cannot fully achieve effective chronic pain control because of their lower efficacy and/or accompanying side effects. Voltage-gated potassium channels (KCNQ) openers have demonstrated their analgesic effect in preclinical and clinical studies, and are thus considered to be a potential therapeutic target as analgesics. However, these drugs exhibit a narrow therapeutic window due to their imposed central nerve system (CNS) side effects. To clarify the analgesic effect by peripheral KCNQ channel activation, we investigated whether the analgesic effect of the KCNQ channel opener, retigabine, is inhibited by intracerebroventricular (i.c.v.) administration of the KCNQ channel blocker, 10, 10-bis (4-Pyridinylmethyl)-9(10H) -anthracenone dihydrochloride (XE-991) in rats.. Oral administration (p.o.) of retigabine showed an anticonvulsant effect on maximal electronic seizures and an analgesic effect on complete Freund's adjuvant-induced thermal hyperalgesia. However, impaired motor coordination and reduced exploratory behavior were also observed at the analgesic doses of retigabine. Administration (i.c.v.) of XE-991 reversed the retigabine-induced anticonvulsant effect, impaired motor coordination and reduced exploratory behavior but not the analgesic effect. Moreover, intraplantar administration of retigabine or an additional KCNQ channel opener, N-(6-Chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243), inhibited formalin-induced nociceptive behavior.. Our findings suggest that the peripheral sensory neuron is the main target for KCNQ channel openers to induce analgesia. Therefore, peripheral KCNQ channel openers that do not penetrate the CNS may be suitable analgesic drugs as they would prevent CNS side effects. Topics: Animals; Anthracenes; Anticonvulsants; Benzamides; Carbamates; Disease Models, Animal; Electric Stimulation; Exploratory Behavior; Formaldehyde; Freund's Adjuvant; Functional Laterality; Hyperalgesia; Inflammation; KCNQ Potassium Channels; Motor Skills Disorders; Pain; Pain Measurement; Pain Threshold; Phenylenediamines; Potassium Channel Blockers; Pyridines; Rats | 2014 |
Vascular KCNQ (Kv7) potassium channels as common signaling intermediates and therapeutic targets in cerebral vasospasm.
Cerebral vasospasm after subarachnoid hemorrhage (SAH) is characterized by prolonged severe constriction of the basilar artery, which often leads to ischemic brain damage. Locally elevated concentrations of spasmogenic substances induce persistent depolarization of myocytes in the basilar artery, leading to continuous influx of calcium (Ca) through voltage-sensitive Ca channels and myocyte contraction. Potassium (K) channel openers may have therapeutic utility to oppose membrane depolarization, dilate the arteries, and reduce ischemia. Here, we examined the involvement of vascular Kv7 K channels in the pathogenesis of cerebral vasospasm and tested whether Kv7 channel openers are effective therapeutic agents in a rat model of SAH. Patch-clamp experiments revealed that 3 different spasmogens (serotonin, endothelin, and vasopressin) suppressed Kv7 currents and depolarized freshly isolated rat basilar artery myocytes. These effects were significantly reduced in the presence of a Kv7 channel opener, retigabine. Retigabine (10 μM) also significantly blocked L-type Ca channels, reducing peak inward currents by >50%. In the presence of a selective Kv7 channel blocker, XE991, the spasmogens did not produce additive constriction responses measured using pressure myography. Kv7 channel openers (retigabine or celecoxib) significantly attenuated basilar artery spasm in rats with experimentally induced SAH. In conclusion, we identify Kv7 channels as common targets of vasoconstrictor spasmogens and as candidates for therapeutic intervention for cerebral vasospasm. Topics: Animals; Anthracenes; Arginine Vasopressin; Basilar Artery; Carbamates; Celecoxib; Disease Models, Animal; Endothelin-1; KCNQ Potassium Channels; Male; Membrane Transport Modulators; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Myography; Patch-Clamp Techniques; Phenylenediamines; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Sprague-Dawley; Serotonin; Signal Transduction; Subarachnoid Hemorrhage; Sulfonamides; Time Factors; Vasoconstriction; Vasoconstrictor Agents; Vasospasm, Intracranial | 2013 |
Enhanced excitability of guinea pig inferior mesenteric ganglion neurons during and following recovery from chemical colitis.
Postganglionic sympathetic neurons in the prevertebral ganglia (PVG) provide ongoing inhibitory tone to the gastrointestinal tract and receive innervation from mechanosensory intestinofugal afferent neurons primarily located in the colon and rectum. This study tests the hypothesis that colitis alters the excitability of PVG neurons. Intracellular recording techniques were used to evaluate changes in the electrical properties of inferior mesenteric ganglion (IMG) neurons in the trinitrobenzene sulfonic acid (TNBS) and acetic acid models of guinea pig colitis. Visceromotor IMG neurons were hyperexcitable 12 and 24 h, but not 6 h, post-TNBS during "acute" inflammation. Hyperexcitability persisted at 6 days post-TNBS during "chronic" inflammation, as well as at 56 days post-TNBS when colitis had resolved. In contrast, there was only a modest decrease in the current required to elicit an action potential at 24 h after acetic acid administration. Vasomotor neurons from inflamed preparations exhibited normal excitability. The excitatory effects of XE-991, a blocker of the channel that contributes to the M-type potassium current, and heteropodatoxin-2, a blocker of the channel that contributes to the A-type potassium current, were unchanged in TNBS-inflamed preparations, suggesting that these currents did not contribute to hyperexcitability. Riluzole, an inhibitor of persistent sodium currents, caused tonic visceromotor neurons to accommodate to sustained current pulses, regardless of the inflammatory state of the preparation, and restored a normal rheobase in neurons from TNBS-inflamed preparations but did not alter the rheobase of control preparations, suggesting that enhanced activity of voltage-gated sodium channels may contribute to colitis-induced hyperexcitability. Collectively, these data indicate that enhanced sympathetic drive as a result of hyperexcitable visceromotor neurons may contribute to small bowel dysfunction during colitis. Topics: Acetic Acid; Action Potentials; Animals; Anthracenes; Colitis; Disease Models, Animal; Electrophysiology; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Guinea Pigs; Indicators and Reagents; Intestines; Myenteric Plexus; Reaction Time; Riluzole; Trinitrobenzenesulfonic Acid | 2012 |
The M-current inhibitor XE991 decreases the stimulation threshold for long-term synaptic plasticity in healthy mice and in models of cognitive disease.
Aging, mental retardation, number of psychiatric and neurological disorders are all associated with learning and memory impairments. As the underlying causes of such conditions are very heterogeneous, manipulations that can enhance learning and memory in mice under different circumstances might be able to overcome the cognitive deficits in patients. The M-current regulates neuronal excitability and action potential firing, suggesting that its inhibition may increase cognitive capacities. We demonstrate that XE991, a specific M-current blocker, enhances learning and memory in healthy mice. This effect may be achieved by altering basal hippocampal synaptic activity and by diminishing the stimulation threshold for long-term changes in synaptic efficacy and learning-related gene expression. We also show that training sessions regulate the M-current by transiently decreasing the levels of KCNQ/Kv7.3 protein, a pivotal subunit for the M-current. Furthermore, we found that XE991 can revert the cognitive impairment associated with acetylcholine depletion and the neurodegeneration induced by kainic acid. Together, these results show that inhibition of the M-current as a general strategy may be useful to enhance cognitive capacities in healthy and aging individuals, as well as in those with neurodegenerative diseases. Topics: Animals; Anthracenes; Brain; Cognition Disorders; Disease Models, Animal; Electrophysiology; Gene Expression Profiling; Immunohistochemistry; KCNQ3 Potassium Channel; Learning; Male; Memory; Mice; Neuronal Plasticity; Potassium Channel Blockers; Reverse Transcriptase Polymerase Chain Reaction; Synaptic Transmission | 2011 |
Reduction of an afterhyperpolarization current increases excitability in striatal cholinergic interneurons in rat parkinsonism.
Striatal cholinergic interneurons show tonic spiking activity in the intact and sliced brain, which stems from intrinsic mechanisms. Because of it, they are also known as "tonically active neurons" (TANs). Another hallmark of TAN electrophysiology is a pause response to appetitive and aversive events and to environmental cues that have predicted these events during learning. Notably, the pause response is lost after the degeneration of dopaminergic neurons in animal models of Parkinson's disease. Moreover, Parkinson's disease patients are in a hypercholinergic state and find some clinical benefit in anticholinergic drugs. Current theories propose that excitatory thalamic inputs conveying information about salient sensory stimuli trigger an intrinsic hyperpolarizing response in the striatal cholinergic interneurons. Moreover, it has been postulated that the loss of the pause response in Parkinson's disease is related to a diminution of I(sAHP), a slow outward current that mediates an afterhyperpolarization following a train of action potentials. Here we report that I(sAHP) induces a marked spike-frequency adaptation in adult rat striatal cholinergic interneurons, inducing an abrupt end of firing during sustained excitation. Chronic loss of dopaminergic neurons markedly reduces I(sAHP) and spike-frequency adaptation in cholinergic interneurons, allowing them to fire continuously and at higher rates during sustained excitation. These findings provide a plausible explanation for the hypercholinergic state in Parkinson's disease. Moreover, a reduction of I(sAHP) may alter synchronization of cholinergic interneurons with afferent inputs, thus contributing to the loss of the pause response in Parkinson's disease. Topics: Acetylcholine; Action Potentials; Analysis of Variance; Animals; Anthracenes; Apamin; Ascorbic Acid; Barium; Computer Simulation; Corpus Striatum; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; In Vitro Techniques; Indoles; Interneurons; Male; Models, Neurological; Neuroprotective Agents; Oxidopamine; Parkinsonian Disorders; Pyridines; Rats; Rats, Sprague-Dawley; Substantia Nigra | 2011 |
The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain.
We have tested for anti-nociceptive effects of the anticonvulsant KCNQ channel opener, N-(2-amino-4-(4-fluorobenzylamino)-phenyl)carbamic acid ethyl ester (retigabine), in rat models of experimental pain. In the chronic constriction injury and spared nerve models of neuropathic pain, injection of retigabine (5 and 20 mg/kg, p.o.) significantly attenuated (P<0.05) mechanical hypersensitivity in response to pin prick stimulation of the injured hindpaw. In contrast, retigabine had no effect on mechanical hypersensitivity to von Frey stimulation of the injured hindpaw in either model. Cold sensitivity in response to ethyl chloride was only attenuated (P<0.05) in the chronic constriction injury model. In the formalin test, retigabine (20 mg/kg, p.o.) attenuated flinching behaviour in the second phase compared with vehicle (P<0.05), and this effect was completely reversed by the KCNQ channel blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone (XE-991; 3 mg/kg, i.p.). Neither retigabine nor XE-991 administration affected the latency to respond to noxious thermal stimulation of the tail in control animals. These results suggest that retigabine may prove to be effective in the treatment of neuropathic pain. Topics: Animals; Anthracenes; Anticonvulsants; Behavior, Animal; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Hindlimb; Male; Neuralgia; Pain Measurement; Phenylenediamines; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Time Factors | 2003 |
KCNQ/M currents in sensory neurons: significance for pain therapy.
Neuronal hyperexcitability is a feature of epilepsy and both inflammatory and neuropathic pain. M currents [IK(M)] play a key role in regulating neuronal excitability, and mutations in neuronal KCNQ2/3 subunits, the molecular correlates of IK(M), have previously been linked to benign familial neonatal epilepsy. Here, we demonstrate that KCNQ/M channels are also present in nociceptive sensory systems. IK(M) was identified, on the basis of biophysical and pharmacological properties, in cultured neurons isolated from dorsal root ganglia (DRGs) from 17-d-old rats. Currents were inhibited by the M-channel blockers linopirdine (IC50, 2.1 microm) and XE991 (IC50, 0.26 microm) and enhanced by retigabine (10 microm). The expression of neuronal KCNQ subunits in DRG neurons was confirmed using reverse transcription-PCR and single-cell PCR analysis and by immunofluorescence. Retigabine, applied to the dorsal spinal cord, inhibited C and Adelta fiber-mediated responses of dorsal horn neurons evoked by natural or electrical afferent stimulation and the progressive "windup" discharge with repetitive stimulation in normal rats and in rats subjected to spinal nerve ligation. Retigabine also inhibited responses to intrapaw application of carrageenan in a rat model of chronic pain; this was reversed by XE991. It is suggested that IK(M) plays a key role in controlling the excitability of nociceptors and may represent a novel analgesic target. Topics: Animals; Anthracenes; Anura; Carbamates; Cells, Cultured; CHO Cells; Cricetinae; Disease Models, Animal; Ganglia, Spinal; Hyperalgesia; Indoles; Male; Neurons, Afferent; Oocytes; Pain; Pain Management; Pain Measurement; Patch-Clamp Techniques; Phenylenediamines; Potassium Channel Blockers; Potassium Channels; Pyridines; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Transfection | 2003 |