xav939 has been researched along with Medulloblastoma* in 2 studies
2 other study(ies) available for xav939 and Medulloblastoma
Article | Year |
---|---|
XAV939-mediated ARTD activity inhibition in human MB cell lines.
Diphtheria toxin-like ADP-ribosyltransferases 1 and 5 (ARTD-1, ARTD-5) are poly ADP-ribose enzymes (PARP) involved in non-homologous end-joining (NHEJ), which is the major pathway of double-strand break (DSB) repair. In addition, ARTD-5, or Tankyrase (TNKS), is a positive regulator of the WNT signaling implicated in the development and biological behavior of many neoplasms, such as Medulloblastoma (MB), in which radiotherapy is an essential part of the treatment. The use of radiosensitizing agents may improve the therapeutic index in MB patients by increasing the efficacy of radiotherapy, while reducing toxicity to the neuroaxis. ARTD-5 seems to be a good molecular target for improving the current treatment of MB. In this study, we used the small molecule XAV939, a potent ARTD-5 inhibitor with a slight affinity for ARTD-1, in different human MB cell lines. XAV939 inhibited the WNT pathway and DNA-PKcs in our MB cells, with many biological consequences. The co-administration of XAV939 and ionizing radiations (IR) inhibited MB cells proliferation and clonogenic capacity, decreased their efficacy in repairing DNA damage, and increased IR-induced cell mortality. In conclusion, our in vitro data show that XAV939 could be a very promising small molecule in MB treatment, and these results lay the basis for further in vivo studies with the aim of improving the current therapy available for MB patients. Topics: ADP Ribose Transferases; Cell Line, Tumor; Cell Proliferation; Cell Survival; DNA Breaks, Double-Stranded; DNA End-Joining Repair; DNA-Activated Protein Kinase; GPI-Linked Proteins; Heterocyclic Compounds, 3-Ring; Humans; Medulloblastoma; Nuclear Proteins; Radiation-Sensitizing Agents; Tankyrases; Wnt Signaling Pathway | 2015 |
Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.
The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment. Topics: Animals; Antineoplastic Agents; Benzeneacetamides; beta Catenin; Brain Neoplasms; Camptothecin; Celecoxib; Cisplatin; Colorectal Neoplasms; Dacarbazine; DNA Modification Methylases; DNA Repair Enzymes; Doxorubicin; Drug Resistance, Neoplasm; Flow Cytometry; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Glioma; Glucose-6-Phosphate Isomerase; Heterocyclic Compounds, 3-Ring; Humans; Immunoblotting; Immunohistochemistry; Irinotecan; Medulloblastoma; Mice; Neoplasm Transplantation; Neoplasms; Neuroblastoma; Pyrans; Pyrazines; Pyridines; Real-Time Polymerase Chain Reaction; Sulfones; Temozolomide; Triazoles; Tumor Suppressor Proteins; Vincristine; Wnt Proteins; Wnt Signaling Pathway | 2015 |