xanthohumol has been researched along with Reperfusion-Injury* in 4 studies
4 other study(ies) available for xanthohumol and Reperfusion-Injury
Article | Year |
---|---|
Xanthohumol protects neuron from cerebral ischemia injury in experimental stroke.
Treatment of antioxidants is necessary to protect ischemic stroke associated neuronal damage. Xanthohumol (XN), a natural flavonoid extracted from hops, has been reported to have potential function as an antioxidant and can be used for neuro protection. However, the role of XN in ischemic stroke remains unclear. Here, we studied the neuroprotective effects of XN through experimental stroke models. Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD) was used as in vivo and in vitro model, respectively. We found that the treatment of XN improved MCAO-induced brain injury by reducing infarct size, improving neurological deficits, reversing neuronal damage, reducing oxidative stress injury and cell apoptosis. Further experimental studies showed that XN could revive neuronal apoptosis induced by OGD by preventing oxidative stress injury. In addition, our study suggested that these effects were related to the inhibition of phosphorylation of p38-MAPK and the mediation of nuclear Nrf2 activation. In conclusion, the neuroprotective effects of XN showed in this study make XN a promising supplement for ischemic stroke protection. Topics: Animals; Antioxidants; Apoptosis; Brain Ischemia; Flavonoids; Infarction, Middle Cerebral Artery; Male; Neurons; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Primary Cell Culture; Propiophenones; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Stroke | 2020 |
Xanthohumol suppresses inflammatory response to warm ischemia-reperfusion induced liver injury.
Liver ischemia/reperfusion (I/R) leads to formation of reactive oxygen species (ROS), which cause hepatic injury and initiate an inflammatory response, which is a critical problem after liver surgery and transplantation. Xanthohumol, the major prenylated chalcone found in hops, has been discussed for its anti-inflammatory and ROS-scavenging properties, and thus, we aimed to investigate the effect of xanthohumol in a model of warm I/R liver injury. Xanthohumol was applied to BALB/c mice orally at a dose of 1 mg/g body weight for 5 days before I/R-injury was induced by clamping the vascular blood supply to the median and left lateral liver lobe for 1 h followed by a 6 h period of reperfusion. At this time, HPLC analysis revealed hepatic xanthohumol levels of approximately 2 μM, a concentration which has been shown to inhibit inflammatory effects in vitro. Assessment of hepatic HMOX1 expression, hepatic glutathione content and immunohistochemical analysis for proteins conjugated with the reactive aldehyde 4-hydroxynonenal indicated that I/R-induced oxidative stress was significantly inhibited in xanthohumol-fed compared to control mice. Histological analysis, TUNEL staining and determination of transaminase serum levels revealed no significant effects of xanthohumol on acute hepatocellular injury. However, at the same time point, pretreatment with xanthohumol almost completely blunted the I/R-induced AKT and NFκB activation and the expression of the proinflammatory genes IL-1alpha, IL-6, MCP-1 and ICAM-1, which are known to play a crucial role in the subacute phase of I/R-induced liver damage. In conclusion, these data indicate the potential of xanthohumol application to prevent adverse inflammatory responses to I/R-induced liver damage such as after surgical liver resection or transplantation. Topics: Alanine Transaminase; Animals; Chemokine CCL2; Flavonoids; Glutathione; Heme Oxygenase-1; Inflammation; Intercellular Adhesion Molecule-1; Interleukin-1alpha; Interleukin-6; Liver; Male; Membrane Proteins; Mice; Mice, Inbred BALB C; NF-kappa B; Oxidative Stress; Propiophenones; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Reperfusion Injury; Warm Ischemia | 2013 |
Neuroprotective effects of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), in ischemic stroke of rats.
Xanthohumol is the principal prenylated flavonoid in hops (Humulus lupulus L.), an ingredient of beer. Xanthohumol was found to be a potent chemopreventive agent; however, no data are available concerning its neuroprotective effects. In the present study, the neuroprotective activity and mechanisms of xanthohumol in rats with middle cerebral artery occlusion (MCAO)-induced cerebral ischemia were examined. Treatment with xanthohumol (0.2 and 0.4 mg/kg; intraperitoneally) 10 min before MCAO dose-dependently attenuated focal cerebral ischemia and improved neurobehavioral deficits in cerebral ischemic rats. Xanthohumol treatment produced a marked reduction in infarct size compared to that in control rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor (HIF)-1α, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and active caspase-3 protein expressions in ischemic regions. These expressions were obviously inhibited by treatment with xanthohumol. In addition, xanthohumol (3-70 μM) concentration-dependently inhibited platelet aggregation stimulated by collagen (1 μg/mL) in human platelet-rich plasma. An electron spin resonance (ESR) method was used to examine the scavenging activity of xanthohumol on free radicals which had formed. Xanthohumol (1.5 and 3 μM) markedly reduced the ESR signal intensity of hydroxyl radical (OH•) formation in the H₂O₂/NaOH/DMSO system. In conclusion, this study demonstrates for the first time that in addition to its originally being considered an agent preventing tumor growth, xanthohumol possesses potent neuroprotective activity. This activity is mediated, at least in part, by inhibition of inflammatory responses (i.e., HIF-1α, iNOS expression, and free radical formation), apoptosis (i.e., TNF-α, active caspase-3), and platelet activation, resulting in a reduction of infarct volume and improvement in neurobehavior in rats with cerebral ischemia. Therefore, this novel role of xanthohumol may represent high therapeutic potential for treatment or prevention of ischemia-reperfusion injury-related disorders. Topics: Animals; Brain Ischemia; Flavonoids; Free Radical Scavengers; Humulus; Inflorescence; Male; Propiophenones; Rats; Rats, Wistar; Reperfusion Injury; Stroke | 2012 |
Antioxidant effects of xanthohumol and functional impact on hepatic ischemia-reperfusion injury.
Therapeutic effects of dietary flavonoids have been attributed mainly to their antioxidant capacity. Xanthohumol (1), a prominent flavonoid of the hop plant, Humulus lupulus, was investigated for its antioxidant potential and for its effect on NF-kappaB activation. To examine the biological relevance of 1, a hepatic ischemia/reperfusion model was chosen as a widely accepted model of oxidative stress generation. The impact of 1 on endogenous antioxidant systems, on the NF-kappaB signal transduction pathway as well as on apoptotic parameters, and on hepatic tissue damage was evaluated. Compound 1 markedly decreased the level of reactive oxygen species in vitro. Furthermore, levels of enzymatic and nonenzymatic antioxidants were restored after pretreatment in postischemic hepatic tissue, and lipid peroxidation was attenuated. NF-kappaB activity was reduced in vitro as well as in hepatic tissue after ischemia/reperfusion upon pretreatment with 1. In addition, the phosphorylation of Akt was markedly inhibited. Surprisingly, 1 decreased the expression of the antiapoptotic protein Bcl-X and increased caspase-3 like-activity, a proapoptotic parameter. Moreover, hepatic tissue damage as well as TNF-alpha levels increased in xanthohumol-pretreated liver tissue after ischemia/reperfusion. In summary, xanthohumol did not protect against ischemia/reperfusion injury in rat liver, despite its antioxidant and NF-kappaB inhibitory properties. Topics: Animals; Antioxidants; Flavonoids; Liver; Molecular Structure; NF-kappa B; Oxidative Stress; Propiophenones; Rats; Reperfusion Injury; Tumor Necrosis Factor-alpha | 2009 |